Skip to main content
Log in

Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter \(H \in \left( {\tfrac{1} {4},\tfrac{1} {2}} \right)\)

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter \(H \in \left( {\tfrac{1} {4},\tfrac{1} {2}} \right)\) under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the spectrum of the spatial differential operator and the identity of the infinite double series in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with \(H \in \left( {\tfrac{1} {2},1} \right)\) without any additional restriction on the parameter H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellout, H., Bloom, F., and Nečas, J. Phenomenological behavior of multipolar viscous fluids. Quarterly of Applied Mathematics, 50(3), 559–583 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Bloom, F. and Hao, W. Regularization of a non-Newtonian system in an unbounded channel: existence and uniqueness of solutions. Nonlinear Analysis: Theory, Methods & Applications, 44(3), 281–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, B. L. and Guo, C. X. The convergence of non-Newtonian fluids to Navier-Stokes equations. Journal of Mathematical Analysis and Applications, 357(2), 468–478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ladyzhenskaya, O. A. The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York (1963)

    MATH  Google Scholar 

  5. Zhao, C. D. and Duan, J. Q. Random attractor for the Ladyzhenskaya model with additive noise. Journal of Mathematical Analysis and Applications, 362(1), 241–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao, C. D. and Zhou, S. F. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. Journal of Differential Equations, 238(2), 394–425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, J. and Huang, J. H. Dynamics of 2D stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, Series B, 17(7), 2483–2508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolmogorov, A. N. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Doklady, 26, 115–118 (1940)

    Google Scholar 

  9. Mandelbrot, B. B. and van Ness, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shiryaev, A. N. Essentials of stochastic finance. Advanced Series on Statistical Science & Applied Probability, Vol. 3, World Scientific Publishing Co, Inc., New Jersey (1999)

    Google Scholar 

  11. Daniel, H. Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin (1981)

    Google Scholar 

  12. Samko, S. G., Kilbas, A. A., and Marichev, O. I. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, New York (1993)

    MATH  Google Scholar 

  13. Alòs, E., Mazet, O., and Nualart, D. Stochastic calculus with respect to Gaussian processes. Annals of Probability, 29(2), 766–801 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duncan, T. E., Maslowski, B., and Pasik-Duncan, B. Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion. SIAM Journal on Applied Mathematics, 40(6), 2286–2315 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tindel, S., Tudor, C. A., and Viens, F. Stochastic evolution equations with fractional Brownian motion. Probability Theory and Related Fields, 127(2), 186–204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courant, R. and Hilbert, D. Methods of Mathematical Physics, Wiley-InterScience, New York (1966)

    Google Scholar 

  17. Kelliher, J. P. Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane. Pacific Journal of Mathematics, 244(1), 99–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Borwein, J. M. and Borwein, P. B. PI and the AGM, Wiley-InterScience, New York (1987)

    MATH  Google Scholar 

  19. Wang, G. L., Zeng, M., and Guo, B. L. Stochastic Burgers’ equation driven by fractional Brownian motion. Journal of Mathematical Analysis and Applications, 371(1), 210–222 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Decreusefond, L. and Üstünel, A. S. Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10, 177–214 (1996)

    Article  Google Scholar 

  21. Da Prato, G. and Zabczyk, J. Ergodicity for Infinite-Dimensional Systems, Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  22. Maslowski, B. and Schmalfuss, B. Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Analysis and Applications, 22(6), 1577–1607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crauel, H. and Flandoli, F. Attractors for random dynamical systems. Probability Theory and Related Fields, 100(3), 365–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arnold, L. Random Dynamical Systems, Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  25. Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  26. Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li  (李 劲).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10971225), the Natural Science Foundation of Hunan Province (No. 11JJ3004), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (No. 2009-1001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Huang, Jh. Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter \(H \in \left( {\tfrac{1} {4},\tfrac{1} {2}} \right)\) . Appl. Math. Mech.-Engl. Ed. 34, 189–208 (2013). https://doi.org/10.1007/s10483-013-1663-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1663-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation