Skip to main content
Log in

Mellin analysis and its basic associated metric—applications to sampling theory

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

In this paper a notion of functional “distance” in the Mellin transform setting is introduced and a general representation formula is obtained for it. Also, a determination of the distance is given in terms of Lipschitz classes and Mellin–Sobolev spaces. Finally applications to approximate versions of certain basic relations valid for Mellin band-limited functions are studied in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press (New York–London, 1975).

    MATH  Google Scholar 

  2. C. Bardaro, P. L. Butzer and I. Mantellini, The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampl. Theory Signal Image Process., 13 (2014), 35–66.

    MathSciNet  MATH  Google Scholar 

  3. C. Bardaro, P. L. Butzer and I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961–1017.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bardaro, P. L. Butzer and I. Mantellini, The Mellin–Parseval formula and its interconnections with the exponential sampling theorem of optical physics, Integral Transforms Spec. Funct., 27 (2016), 17–29.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bardaro, P. L. Butzer, I. Mantellini and G. Schmeisser, On the Paley–Wiener theorem in the Mellin transform setting, J. Approx. Theory, 207 (2016), 60–75.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. P. Boas, The derivative of a trigonometric integral, J. London Math. Soc., 12 (1937), 164–165.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bertero and E. R. Pike, Exponential sampling method for Laplace and other dilationally invariant transforms I. Singular-system analysis; II. Examples in photon correlation spectroscopy and Fraunhofer diffraction, Inverse Problems, 7 (1991), 1–20, 21–41.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. L. Butzer and S. Jansche, Mellin transform theory and the role of its differential and integral operators, in: “Proc. Workshop on Transform Methods and Special Functions”, Varna, 1996, Bulgarian Acad. Sci. (Sofia, 1998), pp. 63–83.

    Google Scholar 

  9. P. L. Butzer and S. Jansche, A direct approach to Mellin transforms, J. Fourier Anal. Appl. 3 (1997), 325–375.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. L. Butzer and S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 99–122 (special issue dedicated to Professor Calogero Vinti).

    MathSciNet  MATH  Google Scholar 

  11. P. L. Butzer and S. Jansche, A self contained approach to Mellin transform analysis for square integrable functions and applications, Integral Transforms Spec. Funct., 8 (1999), 175–198.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, vol. I, Academic Press (New York, 1971).

    Book  MATH  Google Scholar 

  14. P. L. Butzer, G. Schmeisser and R. L. Stens, Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives—the aliasing error involved by their extensions from bandlimited to non-bandlimited signal, Entropy, 14 (2012), 2192–2226.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. L. Butzer, G. Schmeisser and R. L. Stens, Basic relations valid for the Bernstein Space Bp s and their extensions to functions from larger spaces with error estimates in terms of their distances from Bp s, J. Fourier Anal. Appl., 19 (2013), 333–375.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. L. Butzer, G. Schmeisser and R. L. Stens, Basic relations valid for the Bernstein spaces B s 2 and their extensions to larger functions spaces via a unified distance concept, in: “Function Spaces X”, Banach Centre Publications, 102 (Warszawa, 2014), pp. 41–55.

    MathSciNet  MATH  Google Scholar 

  17. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (fifth edition), Academic Press (San Diego, CA, 1994).

    MATH  Google Scholar 

  18. R. G. Mamedov, The Mellin Transform and Approximation Theory, Elm (Baku, 1991) (in Russian).

    MATH  Google Scholar 

  19. N. Ostrowsky, D. Sornette, P. Parker and E. R. Pike, Exponential sampling method for light scattering polydispersity analysis, Opt. Acta, 28 (1994), 10591070.

    Google Scholar 

  20. M. Riesz, Formule d’interpolation pour la dérivée d’un polynôme, C. R. Acad. Sci. Paris, 158 (1914), 1152–1154.

    MATH  Google Scholar 

  21. G. Schmeisser, Numerical differentiation inspired by a formula of R.P. Boas, J. Approx. Theory, 160 (2009), 202–222.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schmeisser.

Additional information

Carlo Bardaro and Ilaria Mantellini have been partially supported by the “Gruppo Nazionale per l’Analisi Matematica e Applicazioni (GNAMPA) of the “Istituto Nazionale di Alta Matematica” (INDAM) as well as by the Department of Mathematics and Computer Sciences of the University of Perugia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardaro, C., Butzer, P.L., Mantellini, I. et al. Mellin analysis and its basic associated metric—applications to sampling theory. Anal Math 42, 297–321 (2016). https://doi.org/10.1007/s10476-016-0401-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-016-0401-9

Key words and phrases

Mathematics Subject Classification

Navigation