Skip to main content
Log in

On complete convergence and the strong law of large numbers for pairwise independent random variables

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The complete convergence for the maximum partial sums of pairwise independent random variables is obtained. The Kolmogorov strong law of large numbers for pairwise i.i.d. random variables is also obtained. Similar results are established for the moving average processes of pairwise i.i.d. random variables and for pairwise independent random elements taking values in a Banach space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Asadian, V. Fakoor and A. Bozorgnia, Rosenthal’s type inequalities for negatively orthant dependent random variables, J. Iran. Statist. Soc., 5 (2006), 69–75.

    Google Scholar 

  2. P. Banys, Y. Davydov and V. Paulauskas, Remarks on the SLLN for linear random fields, Statist. Probab. Lett., 80 (2010), 489–496.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 120 (1965), 108–123.

    Article  MATH  MathSciNet  Google Scholar 

  4. G.-H. Cai, Strong law of large numbers for arrays of rowwise pairwise NQD random variables, Missouri J. Math. Sci., 19 (2007), 35–44.

    MATH  Google Scholar 

  5. P. Chen, T. C. Hu and A. Volodin, A note on the rate of complete convergence for maximum of partial sums for moving average processes in Rademacher type Banach spaces, Lobachevskii J. Math., 21 (2006), 45–55.

    MathSciNet  Google Scholar 

  6. P. Chen, T. C. Hu and A. Volodin, Limiting behaviour of moving average processes under φ-mixing assumption, Statist. Probab. Lett., 79 (2009), 105–111.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Chen and D. Wang, L r convergence for B-valued random elements, Acta Math. Sinica, English Series, 28 (2012), 857–868.

    Article  Google Scholar 

  8. S. Csörgő, K. Tandori and V. Totik, On the strong law of large numbers for pairwise independent random variables, Acta Math. Hungar., 42 (1983), 319–330.

    Article  MathSciNet  Google Scholar 

  9. N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Commun. Statist. Theor. Meth., 10 (1981), 307–337.

    Article  MathSciNet  Google Scholar 

  10. N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahr. Verw. Geb., 55 (1981), 119–122.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Fazekas and T. Tómács, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publ. Math. Debrecen, 53 (1998), 149–161.

    MATH  MathSciNet  Google Scholar 

  12. P. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Katz, The probability in the tail of a distribution, Ann. Math. Statist., 34 (1963), 312–318.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. M. Kruglov, Strong law of large numbers, stability problems for stochastic models, in: V. M. Zolotarev, V. M. Kruglov and V. Yu. Korolev (Eds.) TVP/VSP, (Moscow/Utrecht, 1994), pp. 139–150.

  15. A. Kuczmaszewska, On the strong law of large numbers for ϕ-mixing and ρ-mixing random variables, Acta. Math. Hungar, 132 (2011), 174–189.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Li, M. B. Rao and X. C. Wang, Complete convergence of moving average processes, Statist. Probab. Lett., 14 (1992), 111–114.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Liu, Precise large deviations for dependent random variables with heavy tails, Statist. Probab. Lett., 79 (2009), 1290–1298.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Y. L. Tong (Ed.) Inequalities in Statistics and Probability, IMS Lecture Notes Monogr. Ser. 5 (1984), pp. 127–140.

    Chapter  Google Scholar 

  20. P. Révész, Random Walk in Random and Non-random Environments, 2nd ed., World Scientific (Singapore, 2005).

    Book  MATH  Google Scholar 

  21. D.-H. Ryu and S.-R. Ryu, On convergences for arrays of rowwise pairwise negatively quadrant dependent random variables, J. Appl. Math. Inform., 30 (2012), 327–336.

    MATH  MathSciNet  Google Scholar 

  22. A. Shen, Probability inequalities for END sequence and their applications, J. Inequal. Appl., 2011 (2011).

  23. R. T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables, Ann. Probab., 1 (1973), 164–170.

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc., 82 (1956), 323–339.

    Article  MATH  MathSciNet  Google Scholar 

  25. W. F. Stout, Almost Sure Convergence, Academic Press (New York, 1974).

    MATH  Google Scholar 

  26. S. H. Sung, A note on the complete convergence of moving average processes, Statist. Probab. Lett., 79 (2009), 1387–1390.

    Article  MATH  MathSciNet  Google Scholar 

  27. X. C. Wang and M. B. Rao, Some results on the convergence of weighted sums of random elements in separable Banach spaces, Studia Math., 86 (1987), 131–153.

    MATH  MathSciNet  Google Scholar 

  28. Q. Y. Wu, Convergence properties of pairwise NQD random sequences, Acta Math. Sinica, Chinese Series, 45 (2002), 617–624.

    MATH  Google Scholar 

  29. Y. Wu, On complete moment convergence and L q-convergence for arrays of rowwise LNQD random variables, to appear.

  30. L. X. Zhang and J. F. Wang, A note on complete convergence of pairwise NQD random sequences, Appl. Math. J. Chinese Univ. Ser. A, 19 (2004), 203–208.

    Article  MATH  MathSciNet  Google Scholar 

  31. L. X. Zhang and J. W. Wen, Strong laws for sums of B-valued mixing random fields, Chinese Ann. Math., Chinese Series, 20 (2001), 205–216.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Sung.

Additional information

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, P., Chen, PY. & Sung, S.H. On complete convergence and the strong law of large numbers for pairwise independent random variables. Acta Math Hung 142, 502–518 (2014). https://doi.org/10.1007/s10474-013-0370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0370-4

Key words and phrases

Mathematics Subject Classification

Navigation