Skip to main content

Advertisement

Log in

Design of integrated neural stimulating and recording frontend for bladder control prosthesis

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Functional electrical stimulation has been widely used for the restoration of bladder functions after spinal cord injury or other neurological disorders. However, most of the neuroprostheses for bladder control are still imperfect due to lack of the feedback information about the state of the controlled bladder. The purpose of this study is to develop an implantable system which allows us to stimulate the nerves and record the nerve signals related to the condition of the bladder. The proposed stimulator consists of three parts: a digital-to-analog converter (DAC), a current driver, and a switch network. Using the same current source with a switch network eliminates the need for separate current sources for anodic and cathodic sections and reduce the need for interconnect lines of control signals which is an area-saved and power-efficient configuration. A symmetrical regulated cascode current driver is used to implement a high voltage compliance and a high output impedance which improves its ability with load. The amplitude, frequency and the pulse width of the stimulating current are adjusted by encoding the DAC and switch sequences, respectively. In addition, we also present two-stage fully differential capacitively-coupled amplifiers for neural recording. The neural amplifier’s parameters are carefully chosen according to the characteristics of neural signal; meanwhile, we analyzed theoretically the main noise sources, especially the pseudo-resistor in the feedback path which gives little attention by previous studies. The integrated neural stimulating and recording frontend for bladder control prosthesis has been designed and simulated, using a TSMC’s 0.18-μm CMOS process. The proposed stimulator can provide a symmetrical cathodic-first biphasic current pulse with interphasic gap, a low headroom voltage of 0.168 V corresponding to 2.48 mA full-scale current, an adjustable pulse width of 100–500 μs and frequency of 1–40 Hz. The recording amplifier with a low input-referred noise of 3.62 μV, an NEF of 3.88 and a low power dissipation of 7.2 μW has a gain of 61.6 dB and a frequency bandwidth from 300 Hz to 5.3 kHz. Both circuit analysis and simulations are presented to examine the performance of the proposed designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee, J. W., Kim, D., Yoo, S., Lee, H., Lee, G.-H., & Nam, Y. (2015). Emerging neural stimulation technologies for bladder dysfunctions. International Neurourology Journal, 19(1), 3–11.

    Article  Google Scholar 

  2. Fowler, C. J., Griffiths, D., & de Groat, W. C. (2008). The neural control of micturition. Nature Reviews Neuroscience, 9(6), 453–466.

    Article  Google Scholar 

  3. Rijkhoff, N., Wijkstra, H., Van Kerrebroeck, P., & Debruyne, F. (1997). Urinary bladder control by electrical stimulation: Review of electrical stimulation techniques in spinal cord injury. Neurourology and Urodynamics, 16(1), 39–53.

    Article  Google Scholar 

  4. Wyndaele, J. J., Brauner, A., Geerlings, S. E., Bela, K., Peter, T., & Bjerklund-Johanson, T. E. (2012). Clean intermittent catheterization and urinary tract infection: Review and guide for future research. BJU International, 110(11c), E910–E917.

    Article  Google Scholar 

  5. Schwantes, U., Grosse, J., & Wiedemann, A. (2015). Refractory overactive bladder: A common problem? International Urogynecology Journal, 26(10), 1407–1414.

    Article  Google Scholar 

  6. Stein, R., Schröder, A., & Thüroff, J. W. (2012). Bladder augmentation and urinary diversion in patients with neurogenic bladder: Surgical considerations. Journal of Pediatric Urology, 8(2), 153–161.

    Article  Google Scholar 

  7. Granger, N., Chew, D., Fairhurst, P., Fawcett, J., Lacour, S., Craggs, M., et al. (2013). Use of an implanted sacral nerve stimulator to restore urine voiding in chronically paraplegic dogs. Journal of Veterinary Internal Medicine, 27(1), 99–105.

    Article  Google Scholar 

  8. Kirkham, A., Knight, S., Craggs, M., Casey, A., & Shah, P. (2002). Neuromodulation through sacral nerve roots 2 to 4 with a Finetech-Brindley sacral posterior and anterior root stimulator. Spinal Cord, 40(6), 272–281.

    Article  Google Scholar 

  9. Yoo, P. B., Klein, S. M., Grafstein, N. H., Horvath, E. E., Amundsen, C. L., Webster, G. D., et al. (2007). Pudendal nerve stimulation evokes reflex bladder contractions in persons with chronic spinal cord injury. Neurourology and Urodynamics, 26(7), 1020–1023.

    Article  Google Scholar 

  10. Bhadra, N., Grünewald, V., Creasey, G. H., & Mortimer, J. T. (2006). Selective activation of the sacral anterior roots for induction of bladder voiding. Neurourology and Urodynamics, 25(2), 185–193.

    Article  Google Scholar 

  11. Boger, A. S., Bhadra, N., & Gustafson, K. J. (2012). High frequency sacral root nerve block allows bladder voiding. Neurourology and Urodynamics, 31(5), 677–682.

    Article  Google Scholar 

  12. Lombardi, G., & Del Popolo, G. (2009). Clinical outcome of sacral neuromodulation in incomplete spinal cord injured patients suffering from neurogenic lower urinary tract symptoms. Spinal Cord, 47(6), 486–491.

    Article  Google Scholar 

  13. Choudhary, M., Mastrigt, R., & Asselt, E. (2015). Effect of tibial nerve stimulation on bladder afferent nerve activity in a rat detrusor overactivity model. International Journal of Urology, 23(3), 253–258.

    Article  Google Scholar 

  14. McGee, M. J., & Grill, W. M. (2014). Selective co-stimulation of pudendal afferents enhances bladder activation and improves voiding efficiency. Neurourology and Urodynamics, 33(8), 1272–1278.

    Article  Google Scholar 

  15. Boger, A., Bhadra, N., & Gustafson, K. J. (2008). Bladder voiding by combined high frequency electrical pudendal nerve block and sacral root stimulation. Neurourology and Urodynamics, 27(5), 435–439.

    Article  Google Scholar 

  16. Noblett, K. L., & Cadish, L. A. (2014). Sacral nerve stimulation for the treatment of refractory voiding and bowel dysfunction. American Journal of Obstetrics and Gynecology, 210(2), 99–106.

    Article  Google Scholar 

  17. Spinelli, M. (2007). The future of the sacral nerve stimulation. Pelviperineology, 26, 17–18.

    Google Scholar 

  18. Bruns, T., Gaunt, R., & Weber, D. (2012). Selective recording and stimulation with a sacral dorsal root ganglia neural interface. In International Functional Electrical Stimulation Society Annual Meeting (pp. 9–12).

  19. Ren, J., Chew, D. J., Biers, S., & Thiruchelvam, N. (2015). Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts. Neurourology and Urodynamics, 35(3), 365–370.

    Article  Google Scholar 

  20. Wei, X., Rijkhoff, N. J., Santa, W. A., Anderson, J. A., Afshar, P., Schindeldecker, W. J., et al. Functional electrical stimulation as a neuroprosthetic methodology for enabling closed-loop urinary incontinence treatment. In 2011 5th international IEEE/EMBS conference on neural engineering (NER), 2011 (pp. 650–654).

  21. Horvath, E. E., Yoo, P. B., Amundsen, C. L., Webster, G. D., & Grill, W. M. (2010). Conditional and continuous electrical stimulation increase cystometric capacity in persons with spinal cord injury. Neurourology and Urodynamics, 29(3), 401–407.

    Google Scholar 

  22. Wark, H. A. C., Black, S. R., Mathews, K. S., Cartwright, P. C., Gustafson, K. J., & Normann, R. A. (2015). Restoration from acute urinary dysfunction using utah electrode arrays implanted into the feline pudendal nerve. Neuromodulation: Technology at the Neural Interface, 18(4), 317–323.

    Article  Google Scholar 

  23. Bruns, T. M., Weber, D. J., & Gaunt, R. A. (2015). Microstimulation of afferents in the sacral dorsal root ganglia can evoke reflex bladder activity. Neurourology and Urodynamics, 34(1), 65–71.

    Article  Google Scholar 

  24. Uranga, A., Barniol, N., Marin, D., Villa, R., & Aguilo, J. (2002). An integrated implantable electrical sacral root stimulator for bladder control. Neuromodulation: Technology at the Neural Interface, 5(4), 238–247.

    Article  Google Scholar 

  25. Mounaim, F., & Sawan, M. (2007). Miniature implantable system dedicated to bi-channel selective neurostimulation. In IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007 (pp. 2072–2075).

  26. Sawan, M., Ba, A., Mounaim, F., Corcos, J., & Elhilali, M. (2008). Biomedical circuits and systems dedicated for sensing and neurostimulation: Case study on urinary bladder dysfunctions. Turkish Journal of Electrical Engineering & Computer Sciences, 16(3), 171–187.

    Google Scholar 

  27. Fjorback, M. V., Hansen, J., Dalmose, A., Rijkhoff, N., & Sinkjær, T. (2003). A portable device for experimental treatment of neurogenic detrusor overactivity. Neuromodulation: Technology at the Neural Interface, 6(3), 158–165.

    Article  Google Scholar 

  28. Li, Y.-T., Chen, J.-J. J., Chen, L.-T., Lin, W.-S., & Chu, C.-H. (2012). Wireless implantable biomicrosystem for bladder pressure monitoring and nerve stimulation. In IEEE Biomedical Circuits and Systems Conference (BioCAS), 2012 (pp. 296–299).

  29. Huang, C.-Y., Lee, S.-Y., Hong, J.-H., Liang, M.-C., & Hsieh, C.-H. (2012). Burst-pulse control of microstimulator for bladder controller. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2012, (pp. 84–87).

  30. Lin, Y.-T., Lai, C.-H., Kuo, T.-S., Chen, C.-C., Chen, Y.-L., Young, S.-T., et al. (2014). Dual-channel neuromodulation of pudendal nerve with closed-loop control strategy to improve bladder functions. Journal of Medical and Biological Engineering, 34(34), 82–89.

    Article  Google Scholar 

  31. Melgaard, J., & Rijkhoff, N. J. (2014). Detecting urinary bladder contractions: Methods and devices. Journal of Sensor Technology, 4(04), 165.

    Article  Google Scholar 

  32. Majerus, S. J., Fletter, P. C., Damaser, M. S., & Garverick, S. L. (2011). Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Transactions on Biomedical Engineering, 58(3), 763–767.

    Article  Google Scholar 

  33. Tan, R., McClure, T., Lin, C., Jea, D., Dabiri, F., Massey, T., et al. (2009). Development of a fully implantable wireless pressure monitoring system. Biomedical Microdevices, 11(1), 259–264.

    Article  Google Scholar 

  34. Hansen, J., Borau, A., Rodríguez, A., Vidal, J., Sinkjær, T., & Rijkhoff, N. J. (2007). Urethral sphincter EMG as event detector for Neurogenic detrusor overactivity. IEEE Transactions on Biomedical Engineering, 54(7), 1212–1219.

    Article  Google Scholar 

  35. Wenzel, B. J., Boggs, J. W., Gustafson, K. J., Creasey, G. H., & Grill, W. M. (2006). Detection of neurogenic detrusor contractions from the activity of the external anal sphincter in cat and human. Neurourology and Urodynamics, 25(2), 140–147.

    Article  Google Scholar 

  36. Wenzel, B. J., Boggs, J. W., Gustafson, K. J., & Grill, W. M. (2005). Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 428–435.

    Article  Google Scholar 

  37. Kurstjens, G., Borau, A., Rodriguez, A., Rijkhoff, N., & Sinkjær, T. (2005). Intraoperative recording of electroneurographic signals from cuff electrodes on extradural sacral roots in spinal cord injured patients. The Journal of Urology, 174(4), 1482–1487.

    Article  Google Scholar 

  38. Jezernik, S., Grill, W. M., & Sinkjaer, T. (2001). Detection and inhibition of hyperreflexia-like bladder contractions in the cat by sacral nerve root recording and electrical stimulation. Neurourology and Urodynamics, 20(2), 215–230.

    Article  Google Scholar 

  39. Chew, D. J., Zhu, L., Delivopoulos, E., Minev, I. R., Musick, K. M., Mosse, C. A., et al. (2013). A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Science Translational Medicine, 5(210), 210ra155-210ra155.

  40. Williams, I., & Constandinou, T. G. (2013). An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 129–139.

    Article  Google Scholar 

  41. Thurgood, B. K., Warren, D. J., Ledbetter, N. M., Clark, G. A., & Harrison, R. R. (2009). A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Transactions on Biomedical Circuits and Systems, 3(6), 405–414.

    Article  Google Scholar 

  42. Ortmanns, M., Rocke, A., Gehrke, M., & Tiedtke, H.-J. (2007). A 232-channel epiretinal stimulator ASIC. IEEE Journal of Solid-State Circuits, 42(12), 2946–2959.

    Article  Google Scholar 

  43. Constandinou, T. G., Georgiou, J., & Toumazou, C. (2008). A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Transactions on Biomedical Circuits and Systems, 2(2), 106–113.

    Article  Google Scholar 

  44. Merrill, D. R., Bikson, M., & Jefferys, J. G. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171–198.

    Article  Google Scholar 

  45. Liu, X., Demosthenous, A., & Donaldson, N. (2008). An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors. IEEE Transactions on Biomedical Circuits and Systems, 2(3), 231–244.

    Article  Google Scholar 

  46. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., & Ortmanns, M. (2012). A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE Journal of Solid-State Circuits, 47(1), 244–256.

    Article  Google Scholar 

  47. Loi, D., Carboni, C., Angius, G., Angotzi, G. N., Barbaro, M., Raffo, L., et al. (2011). Peripheral neural activity recording and stimulation system. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 368–379.

    Article  Google Scholar 

  48. Mendez, A., Sawan, M., Minagawa, T., & Wyndaele, J.-J. (2013). Estimation of bladder volume from afferent neural activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(5), 704–715.

    Article  Google Scholar 

  49. Lee, J., Kang, J., Park, S., Seo, J.-S., Anders, J., Guilherme, J., et al. (2009). A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s logarithmic pipeline ADC. IEEE Journal of Solid-State Circuits, 44(10), 2755–2765.

    Article  Google Scholar 

  50. Behzad, R. (2001). Design of analog CMOS integrated circuits. International Edition.

  51. Steyaert, M., Sansen, W., & Chang, Z. (1987). A micropower, low noise monolithic instrumentation amplifier for medical purpose. IEEE Journal of Solid State Circuits, 22, 1163–1168.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundations of China (90307013, 90707005, 61534003, 61401097), Key Program of Jiangsu Province (BE2016738), Science and Technology Pillar Program of Jiangsu Province (BE2013706) and Fundamental Research Funds for the Central Universities (2242016K40100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigong Wang or Xiaoying Lü.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Li, F., Wang, C. et al. Design of integrated neural stimulating and recording frontend for bladder control prosthesis. Analog Integr Circ Sig Process 91, 403–416 (2017). https://doi.org/10.1007/s10470-017-0962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0962-y

Keywords

Navigation