Skip to main content
Log in

Low power, low noise, compact amperometric circuit for three-terminal glucose biosensor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low power, low noise, and compact amperometric circuit architecture, which can be used with three-terminal electrochemical glucose sensor is presented. The architecture, developed from the threshold voltage referenced current source configuration, provides the reference voltage required for electrochemical reaction and converts the reaction current into corresponding voltage. The feasibility of this architecture is demonstrated by the fabrication of the circuit in 0.35 µm CMOS technology. Measurements are performed with the electrical model of three-terminal electrochemical sensor and with the three-terminal glucose biosensor as well. Circuit occupies 125 µm × 340 µm and consumes 199 µW of power and generates 312 µV rms noise. The proposed architecture is suitable for portable electrochemical sensing devices especially for glucose sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pohanka, M., & Skladal, P. (2008). Electrochemical biosensors—principles and applications. Journal of Applied Biomedicine, 6(2), 57–64.

    Google Scholar 

  2. Chou, J. (2000). Hazardous gas monitors: a practical guide to selection, operation and applications. New York: McGraw-Hill.

    Google Scholar 

  3. Wilkins, E., & Atanasov, P. (1996). Glucose monitoring: state of the art and future possibilities. Medical Engineering and Physics, 18(4), 273–288.

    Article  Google Scholar 

  4. Busoni, L., Carlà, M., & Lanzi, L. (2002). A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Review of Scientific Instruments, 73(4), 1921–1923.

    Article  Google Scholar 

  5. Ahmadi, M. M., & Jullien, G. A. (2009). Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7), 1339–1348.

    Article  MathSciNet  Google Scholar 

  6. Greef, R. (1978). Instruments for use in electrode process research. Journal of Physics E: Scientific Instruments, 11(1), 1–12.

    Article  Google Scholar 

  7. Zhang, J., Trombly, N., & Mason, A. (2004). A low noise readout circuit for integrated electrochemical biosensor arrays. in Proceedings of IEEE Sensors, 2004 (vol. 1, pp. 36–39).

  8. Doelling, R. (2000). Potentiostats. In Bank elektronik application note (2nd ed.). Clausthal-Zellerfeld, Germany: Bank Elektroni–Intelligent Controls GmbH.

  9. Gray, P. R. (2009). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  10. Ahmadi, M. M., & Jullien, G. A. (2005). A very low power CMOS potentiostat for bioimplantable applications. In Fifth international workshop on system-on-chip for real-time applications (pp. 184–189).

  11. Ahmadi, M. M., & Jullien, G. A. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 169–180.

    Article  Google Scholar 

  12. Razavi, B. (2001). Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill.

    Google Scholar 

  13. Shenoy, V., Jung, S., Yoon, Y., Park, Y., Kim, H., & Chung, H.-J. (2014). A CMOS analog correlator-based painless nonenzymatic glucose sensor readout circuit. IEEE Sensors Journal, 14(5), 1591–1599.

    Article  Google Scholar 

  14. Webster, J. G. (1998). The measurement, instrumentation and sensors handbook (1st ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  15. Linear technology, LTC2050 Data sheet.

  16. Martin, S. M., Gebara, F. H., Strong, T. D., & Brown, R. B. (2009). A fully differential potentiostat. IEEE Sensors Journal, 9(2), 135–142.

    Article  Google Scholar 

  17. Yoon, Y. (2013). Hierarchical micro/nano structures for painless glucose sensor and self-cleaning surface application, The University of Texas at Dallas.

  18. Wang, W. C., Lai, J. L., Liao, K. H., & Chen, R. J. (2013). Design a potentiostat for glucose bio-sensing system in CMOS technology. In 6th international conference on advanced infocomm technology (ICAIT) (pp. 89–90).

  19. Lim, C., Govardhan, S., Kim, H., Jung, S., & Ryoo, K. (2014). A CMOS switched capacitor based low power amperometric readout circuit for microneedle glucose sensor. Journal of Low Power Electronics, 10(2), 279–285.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by Kumoh National Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon-Ju Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karandikar, N., Jung, S., Sun, Y. et al. Low power, low noise, compact amperometric circuit for three-terminal glucose biosensor. Analog Integr Circ Sig Process 89, 417–424 (2016). https://doi.org/10.1007/s10470-016-0838-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0838-6

Keywords

Navigation