Skip to main content

Advertisement

Log in

A bipolar output voltage pulse transformer boost converter with charge pump assisted shunt regulator for thermoelectric energy harvesting

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This system presents an energy harvesting system that generates bipolar output voltage (±1 V) based on a miniature 1:1 turn-ratio pulse transformer boost converter using sub-threshold level input voltage source. A shunt regulator is designed using six-transistor Schmitt-Trigger core to limit the boost converter output voltage. Another power stage, i.e. a fully integrated on-chip single-stage cross-coupled charge pump, then generates 3 V output from the unused extra output power of boost converter, which is shunted otherwise. The increased voltage headroom generated is instrumental for sensor, analog and RF circuits. Charge pump clock frequency is designed to adaptively tracking the input voltage, which is sensed using power-saving time-domain digital technique. Based on a standard CMOS 0.13-µm technology, chip measurement verified the operations of the boost converter, shunt regulator and bipolar charge pump prototypes, respectively. Simulations confirmed the full system operations. During start-up, the system only requires minimum start-up input voltage of 36 mV at input power of 5.8 µW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Micropelt, MPG-D751 Datasheet. Retrieved July 1, 2015 from http://www.micropelt.com/down/datasheet_mpg_d751.pdf.

  2. Tellurex, G2-30-0313 Datasheet. Retrieved July 1, 2015 from http://tellurex.com/wp-content/uploads/pdf/G2-30-0313-Specifications.pdf.

  3. Marlow Industries, TG12-2.5 Datasheet. Retrieved July 1, 2015 from http://www.marlow.com/media/marlow/product/downloads/tg12-2-5-01l/TG12-2.5.pdf.

  4. Linear Technology, LTC3108 Datasheet. Retrieved July 1, 2015 from http://cds.linear.com/docs/en/datasheet/3108fc.pdf.

  5. Im, J. P., Wang, S. W., Ryu, S. T., & Cho, G. H. (2012). A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 47(12), 3055–3067.

    Article  Google Scholar 

  6. Teh, Y. K., & Mok, P. K. T. (2013). Design of coupled inductor-based boost converter for ultra low power thermoelectric Energy harvesting using pulse transformer with 75 mV start-up voltage. In Proceedings of the IEEE international conference on electron devices and solid-state circuits (EDSSC) (pp. 1–4).

  7. Teh, Y. K., & Mok, P. K. T. (2014). Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mV self-startup voltage and 74% power efficiency. IEEE Journal of Solid-State Circuits, 49(11), 2694–2704.

    Article  Google Scholar 

  8. Teh, Y. K., & Mok, P. K. T. (2014). A stacked capacitor multi-microwatts source energy harvesting scheme with 86 mV minimum input voltage and ±3 V bipolar output voltage. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(3), 313–323.

    Article  Google Scholar 

  9. Teh, Y. K., & Mok, P. K. T. (2014). A bipolar output voltage pulse transformer boost converter with charge pump assisted shunt regulator for thermoelectric energy harvesting. In Proceedings of the IEEE MWSCAS (pp. 37–40).

  10. Mak, P. I., & Martins, R. P. (2010). High-/mixed-voltage RF and analog CMOS circuits come of age. IEEE Circuits and Systems Magazine, 10(4), 27–39.

    Article  Google Scholar 

  11. Lotze, N., & Manoli, Y. (2012). A 62 mV 0.13 µm CMOS standard-cell-based design technique using Schmitt-Trigger logic. IEEE Journal of Solid-State Circuits, 47(1), 47–60.

    Article  Google Scholar 

  12. Meindl, J. D., & Davis, A. J. (2000). The fundamental limit on binaryswitching energy for terascale integration (TSI). IEEE Journal of Solid-State Circuits, 35(10), 1515–1516.

    Article  Google Scholar 

  13. Zucker, O., Wyatt, J., & Lindner, K. (1984). The meat grinder: Theoretical and practical limitations. IEEE Transactions on Magnetics, 20(2), 391–394.

    Article  Google Scholar 

  14. Galup-Montoro, C., Schneider, M. C., & Machado, M. B. (2012). Ultra-low voltage operation of CMOS analog circuits: Amplifiers, oscillators, and rectifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(12), 932–936.

    Article  Google Scholar 

  15. Chatterjee, B., Sachdev, M., Hsu, S., Krishnamurthy, R., & Borkar, S. (2003). Effectiveness and scaling trends of leakage control techniques for sub-130 nm CMOS technologies. In Proceedings on low power electronics and design (ISLPED) (pp. 122–127).

  16. Verret, D. P., Krishnan, A., & Krishnan, S. (2002). A new look at the antenna effect. IEEE Transactions on Electron Devices, 49(7), 1274–1282.

    Article  Google Scholar 

  17. Leung, K. N., Mok, P. K. T., & Leung, C. Y. (2003). A 2-V 23-μA 5.3-ppm/C curvature-compensated CMOS bandgap voltage reference. IEEE Journal of Solid-State Circuits, 38(3), 561–564.

    Article  Google Scholar 

  18. Jing, X., Mok, P. K. T., Huang, C., & Yang, F. (2012). A 0.5 V nanoWatt CMOS voltage reference with two high PSRR outputs. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 2837–2840).

  19. Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., & Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1 V operation. IEEE Journal of Solid-State Circuits, 34(5), 670–674.

    Article  Google Scholar 

  20. Seok, M., Kim, G., Blaauw, D., & Sylvester, D. (2012). A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE Journal of Solid-State Circuits, 47(10), 2534–2545.

    Article  Google Scholar 

  21. Kulkarni, J. P., Kim, K., & Roy, K. (2007). A 160 mV robust Schmitt-Trigger based subthreshold SRAM. IEEE Journal of Solid-State Circuits, 42(10), 2303–2313.

    Article  Google Scholar 

  22. Favrat, P., Deval, P., & Declercq, M. J. (1998). A high-efficiency CMOS voltage doubler. IEEE Journal of Solid-State Circuits, 33(3), 410–416.

    Article  Google Scholar 

  23. Bandyopadhyay, S., Mercier, P. P., Lysaght, A. C., Stankovic, K. M., & Chandrakasan, A. P. (2014). A 1.1 nW energy harvesting system with 544pW quiescent power for next-generation implants. In Proceedings of the IEEE international solid-state circuits conference (ISSCC) (pp. 396–397).

  24. Kim, J., Mok, P. K. T., & Kim, C. (2014). A 0.15 V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement. In Proceedings of the IEEE international solid state-circuits conference (ISSCC) (pp. 394–395).

  25. Jung, W., Oh, S., Bang, S., Lee, Y., Sylvester, D. & Blaauw, D. (2014). A 3 nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter. In Proceedings of the IEEE international solid state-circuits conference (ISSCC) (pp. 398–399).

  26. Liu, P., Wang, X., Wu, D., Zhang, Z., & Pan, L. (2010). A novel high-speed and low-power negative voltage level shifter for low voltage applications. In Proceedings of the IEEE international symposium circuits and systems (ISCAS) (pp. 601–604).

  27. Kim, S., & Chou, P. H. (2013). Size and topology optimization for supercapacitor-based sub-watt energy harvesters. IEEE Transactions on Power Electronics, 28(4), 2068–2080.

    Article  Google Scholar 

  28. Carlson, E. J., Strunz, K., & Otis, B. P. (2010). A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 45(4), 741–750.

    Article  Google Scholar 

  29. Coilcraft Coupled Inductors-LPR6235 Datasheet. Retrieved July 1, 2015 from http://www.coilcraft.com/pdfs/lpr6235.pdf.

  30. Murata Power Solutions, 786-series General Purpose Pulse Transformer Datasheet. Retrieved July 1, 2015 from http://www.murata-ps.com/data/magnetics/kmp_786.pdf.

  31. Park, S., Min, C., & Cho S. (2009). A 95 nW ring oscillator-based temperature sensor for RFID tags in 0.13 µm CMOS. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (pp. 1153–1156).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Khai Teh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, YK., Mok, P.K.T. A bipolar output voltage pulse transformer boost converter with charge pump assisted shunt regulator for thermoelectric energy harvesting. Analog Integr Circ Sig Process 88, 319–331 (2016). https://doi.org/10.1007/s10470-016-0702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0702-8

Keywords

Navigation