Skip to main content
Log in

A new implementation for the logarithmic/exponential function generator

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents two new approximations for the logarithmic and exponential functions. These approximations require only a square rooter function, a scalar function and a constant. Thus, the realization of these functions in current-mode is simple, straightforward and uses less number of MOSFETs. Simulation results obtained show that the logarithmic function can be obtained with relative root mean square (RRMS) error of 0.0755 over the normalized input range 0.001–1.0 while the exponential function can be obtained with RRMS error of 0.0489 over the normalized input range 0.01–3.0. Much less RRMS errors can be obtained for restricted normalized input values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Carrara, F., Filoramo, O., & Palmisano, G. (2004). High dynamic-range variable gain amplifier with temperature compensation and linear-in-dB gain control. Electronics Letters, 40, 363–364.

    Article  Google Scholar 

  2. Kao, C.-H., Lin, W.-P., & Hsieh, C.-S. (2005). Low-voltage low-power current mode exponential circuit. IEE Proceedings Circuits, Devices and Systems, 152, 633–635.

    Article  Google Scholar 

  3. Vlassis, S. (2001). CMOS current-mode pseudo-exponential function circuit. Electronics Letters, 37, 471–472.

    Article  Google Scholar 

  4. Chang, C.-C., & Liu, S.-I. (2000). Current-mode pseudo-exponential circuit with tunable input range. Electronics Letters, 36, 1335–1336.

    Article  Google Scholar 

  5. Liu, W., Chang, C. C., & Li, S. I. (2000). Realisation of exponential VI converter using composite NMOS transistors. Electronics Letters, 36, 8–10.

    Article  Google Scholar 

  6. Arthansiri, T., & Kasemsuwan, V. (2006). Current-mode pseudo-exponential-control variable-gain amplifier using fourth-order Taylor’s series approximation. Electronics Letters, 42, 379–380.

    Article  Google Scholar 

  7. Q.-H. Duong, T.-K. Nguyen, & S.-G. Lee. (2003). dB-linear V-I converter with tunable input and output range. In Proceedings of the 46th IEEE Midwest Symposium on Circuits and Systems (pp. 201–204).

  8. Q.-H. Duong, T. K Nguyen, & S.-G. Lee. (2004). CMOS exponential current-to-voltage circuit based on newly proposed approximation method. In Proceedings of the International Symposium on Circuits and Systems (pp. II– 865/II–868).

  9. C.-H. Lin, T. Pimenta, M. Ismail. (1998). Universal exponential function implementation using highly-linear CMOS V-I converters for dB-linear (AGC) applications. In Proceedings of the Midwest Symposium on Circuits and Systems (pp. 360-363).

  10. Chang, C.-C., Lin, M.-L., & Liu, S.-I. (2001). CMOS current-mode exponential-control variable-gain amplifier. Electronics Letters, 37, 868–869.

    Article  Google Scholar 

  11. Duong, Q.-H., Nguyen, T.-K., & Lee, S.-G. (2003). Low-voltage low-power high dB-linear CMOS exponential function generator using highly-linear V-I converter. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED) (pp. 349–352).

  12. Lin, K.-J., & Cheng, C.-J. (2009). CMOS current-mode geometric mean circuit with N inputs. In Proceedings of the IEEE International Symposium on Circuits and Systems (pp. 1–4).

  13. Abuelma’atti, M. T., & Al-Yahia, N. M. (2008). An improved universal CMOS current-mode analog function synthesizer. International Journal of Electronics, 95, 1127–1148.

    Article  Google Scholar 

  14. Duong, Q.-H., & Lee, S.-G. (2004). A 35 dB-linear exponential function generator for VGA and AGC applications. In Proceedings of the Asia and South Pacific Design Automation Conference (pp. 1–4).

  15. Kumngern, M., Chanwutitum, J., & Dejhan, K. (2008). Simple CMOS current-mode exponential function generator circuit. In Proceedings of the Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology Conference (ECTI-CON) (pp. 709–711).

  16. Duong, Q.-H., Nguyen, T.-K., & Lee, S.-G. (2004). Ultra low-voltage low-power exponential voltage-mode circuit with tunable output range. In Proceedings of the International Symposium on Circuits and Systems (pp. II-729/II-732).

  17. Duong, Q.-H., Duong, H.-N., Nguyen, T.-K., & S.-G. Lee. (2004). All CMOS current-mode exponential function generator. In Proceedings of the 6th International Conference of Advanced Communication Technology (pp. 528–531).

  18. Duong, Q.-H., Nguyen, T.-K., & Lee, S.-G. (2003). A low-voltage, low-power, and high dB-linear all CMOS exponential function generator for AGC and VGA applications. In Proceedings of the Asia-Pacific Microwave Conference (pp. 1–4).

  19. Lin, C.-H., Pimenta, T.C., & Ismail, M. (1998). A low-voltage CMOS exponential function circuit for AGC applications. In Proceedings of the IX Brazilian Symposium on Integrated Circuit Design (pp. 195–198).

  20. Weng, R.-M. & Hsu, X.-R. (2006). Low-power exponential V-I converter using composite PMOS transistors. In Proceedings of the Asia Pacific Conference on Circuits and Systems (pp. 1473–1475).

  21. Abuelma’atti, M. T. (2002). Universal current-mode analog function synthesizer. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49, 1468–1474.

    Article  Google Scholar 

  22. Liu, W., & Liu, S.-I. (2003). CMOS Exponential function generator. Electronics Letters, 39, 1–2.

    Article  Google Scholar 

  23. Duong, Q.-H., Duong, H.-N., Nguyen, T.-K., & Lee. S.-G. (2004). Pseudo-exponential current-to-voltage converter. In Proceedings of the 6th International Conference of Advanced Communication Technology (pp. 532–535).

  24. Motamed, A., Hwang, C., & Ismail, M. (1997). CMOS exponential current-to-voltage converter. Electronics Letters, 33, 998–1000.

    Article  Google Scholar 

  25. Duong, Q.-H., Nguyen, T.K., & Lee, S.-G. (2004). CMOS exponential current-to-voltage circuit based on newly proposed approximation method.In Proceedings of the IEEE International Symposium on Circuits and Systems (pp. II-865/II-868).

  26. Liu, W., Liu, S.-I., & Wei, S.-K. (2004). CMOS exponential-control variable gain amplifiers. IEE Proceedings-Circuits Devices Systems, 151, 83–86.

    Article  Google Scholar 

  27. Abdelfattah, K. M., & Soliman, A. M. (2002). A new approach to realize variable gain amplifiers. Analog Integrated Circuits and Signal Processing, 30, 257–263.

    Article  Google Scholar 

  28. Lin, M.-L., Erdogan, A. T., Arslan, T. & Stoica, A. (2008). A novel CMOS exponential approximation circuit. In IEEE International Conference on System on Chip (pp. 301–304).

  29. Popa C. (2012). High-accuracy function synthesizer circuit with applications in signal processing, EURASIP Journal of Advances in Signal Processing, 1–11).

  30. Naderi, A., Khoei, A., & Hadidi, K. (2010). Circuit implementation of high-resolution rational-powered membership functions in standard CMOS technology. Analog Integrated Circuits and Signal Processing, 65, 217–223.

    Article  Google Scholar 

  31. Saatlo, A.N., & Ozoguz, S. (2012). CMOS design of a multi-input analog multiplier. In Proceedings of the 8th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), (pp. 217–220).

  32. Koli, K., & Halonen, K. (1997). A 2.5 V temperature compensated CMOS logarithmic amplifier. In Proceedings of the IEEE Custom Integrated Circuits Conference, (pp. 79–82).

  33. Kimura, K. (1993). A CMOS logarithmic IF amplifier with unbalanced source-coupled pairs. IEEE Journal of Solid-State Circuits, 28, 78–83.

    Article  Google Scholar 

  34. Ghanattian-Jahromi, A., Abrishamifar, A., & Medi, A. (2011). A novel voltage-to-voltage logarithmic cinverter with high accuracy. Rezeglad Elektotechniczny (Electrical Review), 87, 150–153.

    Google Scholar 

  35. Abuelma’atti, M.T. (1999). A translinear current-mode programmable analog exponential function synthesizer. In Proceedings of the 11th International Conference on Microelectronics (pp. 209–212).

  36. Toumazou, C., Lidgey, F.J., & Haigh, D.G. (1990). Analogue IC Design: The current mode approach. London: Peter Peregrinus Ltd. On behalf of IEE.

  37. Lopez-Martin, A. J., & Carlosena, A. (2001). Current-mode multiplier/divider circuits based on the MOS translinear loop. Analog Integrated Circuits and Signal Processing, 28, 265–278.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the constructive comments of the reviewers which resulted in improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taher Abuelma’atti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuelma’atti, M.T., Tassaduq, N.A. A new implementation for the logarithmic/exponential function generator. Analog Integr Circ Sig Process 83, 75–84 (2015). https://doi.org/10.1007/s10470-015-0505-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0505-3

Keywords

Navigation