Skip to main content
Log in

Low-power, small-size transmitter module with metamaterial antenna

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Development of a low-power, small-size transmitter is needed for wireless sensor networks. An effective way to reduce power consumption is to reduce the operating time in a voltage-controlled oscillator. In this study, a 2.4 GHz on–off keying transmitter circuit is designed and implemented with an electrically small antenna using a left-handed transmission line. The transmitter circuit was fabricated with a standard 0.18 μm CMOS technology, while the antenna was fabricated with a 3.0 × 4.5 cm printed circuit board, chip capacitors, and chip inductors. Measured output power was −6.8 dBm with a power consumption of 3.59 mW when the baseband signal was always “high”. The power consumption was reduced to 1.96 mW for the baseband signal with a mark ratio of 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Takahagi, K., Matsushita, H., Iida, T., Ikebe, M., Amemiya, Y., & Sano, E. (2013). Low-power wake-up receiver with subthreshold CMOS circuits for wireless sensor networks. Analog Integrated Circuits and Signal Processing, 75, 199–205.

    Article  Google Scholar 

  2. Takahagi, K., & Sano, E. (2011). High-gain silicon on-chip antenna with artificial dielectric layer. IEEE Transactions on Antennas and Propagation, 59(10), 3624–3629.

    Article  Google Scholar 

  3. Chi, P. L., Waterhouse, R., & Itoh, T. (2011). Antenna miniaturization using slow wave enhancement factor from loaded transmission line models. IEEE Transactions on Antennas and Propagation, 59(1), 48–57.

    Article  Google Scholar 

  4. Scardelletti, M. C., Ponchak, G. E., Merritt, S., Minor, J. S. & Zorman, C. A. (2008). Electrically small folded slot antenna utilizing capacitive loaded slot lines. In IEEE Radio Wireless Symposium, Orlando (pp. 731–734).

  5. Liu, Q., Hall, P. S., & Borja, A. L. (2009). Efficiency of electrically small dipole antennas loaded with left-handed transmission line. IEEE Transactions on Antennas and Propagation, 57(10), 3009–3017.

    Article  Google Scholar 

  6. Kamada, S., Michishita, N., & Yamada, Y. (2010). Short-length leaky wave antenna using composite right/left-handed ladder network for UHF band. In International Workshop on Antenna Technology, Lisbon (pp. 1–4).

  7. Antoniades, M. A., & Eleftheriades, G. V. (2008). A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wireless Propagation Letters, 7, 425–428.

    Article  Google Scholar 

  8. Caekenberghe, K. V., Behdad, N., Brakora, K. M., & Sarabandi, K. (2008). A 2.45-GHz electrically small slot antenna. IEEE Antennas Wireless Propagation Letters, 7, 346–348.

    Article  Google Scholar 

  9. Takahagi, K., Otsu, Y., & Sano, E. (2012). 2.45 GHz high-gain electrically small antenna with composite right/left-handed ladder structure. IET Electronics Letters, 48(16), 971–972.

    Article  Google Scholar 

  10. Caloz, C. C., Sanada, A., & Itoh, T. (2004). A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Transactions on Microwave Theory and Techniques, 52(3), 980–992.

    Article  Google Scholar 

  11. Daly, C. D., & Chandrakasan, A. P. (2007). An energy-efficient OOK transceiver for wireless sensor networks. IEEE Journal of Solid-State Circuits, 42(5), 1003–1011.

    Article  Google Scholar 

  12. Huang X., Harpe P., Wang X., Dolmans G., & Groot, H. D. (2010). A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping. In IEEE Radio Frequency Integrated Circuits Symposium, Anaheim (pp. 263–265).

  13. Mercier, P. P., Bandyopadhyay, S., Lysaght, C. A., Stankvoic, M. K., & Chandrakasan, P. A. (2014). A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications. IEEE Journal of Solid-State Circuits, 49(7), 1463–1474.

    Article  Google Scholar 

  14. Chee Y.H., Niknejad, A.M., & Rabaey, J. (2006). A 46 % Efficient 0.8 dBm Transmitter for Wireless Sensor Network. In IEEE VLSI Symposium Digested of Technical Papers (pp. 43–44).

Download references

Acknowledgments

This work was partially supported by SCOPE, and by VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Sano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraishi, K., Wada, T., Kubo, K. et al. Low-power, small-size transmitter module with metamaterial antenna. Analog Integr Circ Sig Process 83, 1–9 (2015). https://doi.org/10.1007/s10470-015-0499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0499-x

Keywords

Navigation