Skip to main content
Log in

On the biquadratic approximation of fractional-order Laplacian operators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces new biquadratic approximation algorithms to approximate fractional-order Laplacian operators of order \(\alpha \,;\,s^{ \pm \alpha } , 0 < \alpha \le 1\), by finite-order rational transfer functions. The significance of this approach lies in developing an algorithm that depends only on \(\alpha\), which enables one to synthesize both fractional-order inductors and capacitors. The fundamental biquadratic transfer function enjoys a flat phase characteristics at its corner frequency. The bandwidth of approximation can be extended by cascading several biquadratic modules, each centered at calculated corner frequency. The proposed approach is straightforward and outperforms similar approximation algorithms. The equal orders of the biquadratic structure allow one to synthesize both fractional-order inductors and fractional-order capacitors using passive circuits. The same approach can easily be extended to design active filters, or fractional-order proportional-integral-derivative controllers. The main ideas of the proposed method are demonstrated using several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Process, 91(3), 386–426.

    Article  MATH  Google Scholar 

  2. Pudlubny, I. (1999). Fractional differential equations. New York: Academic Press.

    Google Scholar 

  3. Oldham, K. B., & Spanier, J. (1974). Fractional calculus. New York: Academic Press.

    MATH  Google Scholar 

  4. Heaviside, O. (1950). Electromagnetic theory (pp. 128–129). New York: Dover Publications.

    MATH  Google Scholar 

  5. Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives. Theory and Applications. Amsterdam: Gordon and Breach.

    MATH  Google Scholar 

  6. El-Khazali, R. (2013). Fractional-order PI λ D μ controller design. Computers & Mathematics with Applications, 5(66), 639–646.

    Article  MathSciNet  Google Scholar 

  7. Vinagre, B. M., Podlubny, I., Hernandez, A., & Feliu, V. (2000). Some approximation of fractional-order operators used in control theory and applications. Fractional Calculus and Applied Analysis, 3(3), 241–248.

    MathSciNet  Google Scholar 

  8. Freeborn, T.J., Maundy, B., & Elwakil, A. (2010). Second-Order Approximation of the Fractional Laplacian Operator for Equal-Ripple Response, 53rd IEEE International Midwest Symposium (MWSCAS), 2010.

  9. Chen, Y. Q., Vinagre, B. M., & Podlubny, I. (2004). Continued fraction expansion approaches to discretizing fractional order derivative: An expository review. Nonlinear Dynamics, 38, 155–170.

    Article  MATH  MathSciNet  Google Scholar 

  10. Charef, A., Sun, H., Tsao, Y., & Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 37, 1465–1470.

    Article  MATH  MathSciNet  Google Scholar 

  11. Oustaloup, A., Levron, F., & Mathieu, B. (2000). Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Transactions on Circuits and Systems I, 47, 25–39.

    Article  Google Scholar 

  12. Gao, Zhe., & Liao, Xiaozhong. (2012). Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization. Journal of Systems Engineering and Electronics, 23(1), 145–153.

    Article  Google Scholar 

  13. El-Khazali, R., Biquadratic Approximation of Fractional-Order Laplacian Operators. IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 69–72), August 4–7, 2013, Ohio, USA.

  14. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and control. London: Springer.

    Book  Google Scholar 

  15. Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    MATH  Google Scholar 

  16. Freeborn, T., Maundy, B., & Elwakil, A. S. (2010). Field programmable analog array implementation of fractional step filters. IET Circuits, Devices & Systems, 4, 514–524.

    Article  Google Scholar 

  17. Ahmad, W., El-Khazali, R., & Elwakil, A. S. (2001). Fractional-order Wien-bridge oscillator. IET Electronic Letters, 37(18), 1110–1112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyad El-Khazali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khazali, R. On the biquadratic approximation of fractional-order Laplacian operators. Analog Integr Circ Sig Process 82, 503–517 (2015). https://doi.org/10.1007/s10470-014-0432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0432-8

Keywords

Navigation