Skip to main content
Log in

0.8 V bulk-driven operational amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low-voltage bulk-driven CMOS operational amplifier is proposed in this paper. The inherent small transconductance of the bulk-driven devices is enlarged using a positive feedback, improving also the noise performance. The amplifier is designed using standard 0.18 μm n-well CMOS process. Although the amplifier is optimized for 0.8 V supply voltage, it is also capable to operate under supply voltage of 0.7 V. The amplifier consumes 130 μΑ, performing 56 dB open-loop gain, 154 nV/√Hz input-referred spot noise at 100 kHz, 80 dB CMRR at 100 kHz and IIP3 equal to −4.7 dBV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1992). Low-power CMOS digital design. IEEE Journal of Solid-State Circuits, 27(3), 473–484.

    Article  Google Scholar 

  2. Ishikawa, M., Tsukahara, T., & Akazawa, Y. (1994). Evolution of mixed signal communication LSI’s. IEICE Transactions on Electronics, 77(C), 1895–1902.

    Google Scholar 

  3. Chatterjee, S., Tsivides, Y., & Kinget, P. (2005). 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE Journal of Solid-State Circuits, 40(12), 2373–2387.

    Article  Google Scholar 

  4. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V Op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems II, Analog and Digital Signal Processing, 45(7), 769–780.

    Article  Google Scholar 

  5. Hu, C. (1993). Future CMOS scaling and reliability. Proceedings of the IEEE, 81(5), 682–689.

    Article  Google Scholar 

  6. Kinget, P., Chatterjee, S., & Tsividis, Y. (2005). Ultra-low voltage analog design techniques for nanoscale CMOS technologies. In IEEE conference on electron devices and solid-state circuits (pp. 9–14).

  7. Ferri, G., & Baschirotto, A. (2001). Low-voltage rail-to-rail switched buffer topologies. International Journal of Circuit Theory and Applications, 29(4), 413–422.

    Article  MATH  Google Scholar 

  8. Hogervorst, R., Tero, J. P., & Hoijising, J. H. (1996). Compact CMOS constant-g m rail-to-rail input stage with g m-control by an electronic zener diode. IEEE Journal of Solid-State Circuits, 31(7), 1035–1040.

    Article  Google Scholar 

  9. Ivanov, V., & Zhang, S. (2002). 250 MHz CMOS rail-to-rail IO OpAmp : Structural design approach. In Proceedings of the 28th solid-state circuits conference ESSIRC (pp. 183–186).

  10. Sakurai, S., & Ismail, M. (1996). Robust design of rail-to-rail CMOS operational amplifiers for a low power supply voltage. IEEE Journal of Solid-State Circuits, 31(2), 146–156.

    Article  Google Scholar 

  11. Redman-White, W. (1997). A high bandwidth constant gm and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low voltage VLSI systems. IEEE Journal of Solid-State Circuits, 32(5), 701–712.

    Article  Google Scholar 

  12. Carrillo, J. M., Duque-Carrillo, J. F., Torelli, G., & Ausín, J. L. (2003). Constant-g m constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 38(8), 1364–1372.

    Article  Google Scholar 

  13. Duque-Carrillo, J. F., Ausín, J. L., Torelli, G., Valverde, J. M., & Domínguez, M. A. (2000). 1-V rail-to-rail operational amplifiers in standard CMOS technology. IEEE Journal of Solid-State Circuits, 35(1), 33–44.

    Article  Google Scholar 

  14. Fischer, T. W., & Karsilayan, A. I. (2002). Rail-to-rail amplifier input stage with constant g m and common-mode elimination. IEE Electron. Letters, 38(24), 1491–1492.

    Article  Google Scholar 

  15. Vlassis, S., & Siskos, S. (2004). Design of voltage-mode and current-mode computational circuits using floating-gate MOS transistors. IEEE Transactions on Circuits and Systems I, 51(2), 329–341.

    Article  Google Scholar 

  16. Ramirez-Angulo, J., Lopez-Martin, A. J., Carvajal, R. G., & Chavero, F. M. (2004). Very low-voltage analog signal processing based on quasi-floating gate transistors. IEEE Journal of Solid-State Circuits, 39(3), 434–442.

    Article  Google Scholar 

  17. Torralba, A., Galan, J., Lujan-Martinez, C., Carvajal, R. G., Ramirez-Angulo, J., & Lopez-Martin, A. (2008). Comparison of programmable linear resistors based on quasi-floating gate MOSFETs. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1712–1715).

  18. Carrillo, J. M., Torelli, G., Pιrez-Aloe, R., & Duque-Carrillo, J. F. (2007). 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE International Journal of Solid-State Circuits, 42(3), 508–517.

    Article  Google Scholar 

  19. Haga, Y., Morling, R. C. S., & Kale, I. (2006). A new bulk-driven input stage design for sub 1-Volt CMOS Op-Amps. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 1547–1550).

  20. Monsurrò, P., Pennisi, S., Scotti, G., & Trifiletti, A. (2009). 0.9-V CMOS cascode amplifier with body-driven gain boosting. International Journal of Circuit Theory and Applications, 37(2), 193–202.

    Article  Google Scholar 

  21. Haga, Y., & Kale, I. (2009). Bulk-driven flipped voltage follower. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 2717–2720).

  22. Pan, S.-W., Chuang, C.-C., Yang, C.-H., Lai, Y.-S. (2009). A novel OTA with dual bulk-driven input stage. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 2721–2724).

  23. Grech, I., Micallef, J., Azzopardi, G., & Debono, C. J. (2005). A low-voltage wide-input-range bulk-input CMOS OTA. Analog Integrated Circuits Signal Processing, 43(2), 127–136.

    Article  Google Scholar 

  24. Layton, K. D., Comer, D. T., & Comer, D. J. (2008). Bulk-driven gain-enhanced fully- differential amplifier for V T  + 2V dsat operation. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 77–80).

  25. Lasanen, K., Räisänen-Ruotsalainen, E., & Kostamovaara, J. (2000). A 1-V 5 W CMOS opamp with bulk-driven input transistors. In Proceedings of IEEE midwest symposium on circuits and systems (MWSCAS) (Vol. 3, pp. 1038–1041).

  26. Stockstad, T., & Yoshizawa, H. (2002). A 0.9 V 0.5 μA rail-to-rail CMOS operational amplifier. IEEE International Journal of Solid-State Circuits, 37(3), 286–292.

    Article  Google Scholar 

  27. Haga, Y., Zare-Hoseini, H., Berkovi, L., & Kale, I. (2005). Design of a 0.8 Volt fully differential CMOS OTA using the bulk-driven technique. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 220–223).

  28. Ferreira, H. C. L., Primenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS MIller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems II, 54(10), 843–847.

    Article  Google Scholar 

  29. Rosenfeld, J., Kozak, M., & Friedman, E. G. (2004). A bulk-driven CMOS OTA with 68 dB gain. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 5–8).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Raikos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raikos, G., Vlassis, S. 0.8 V bulk-driven operational amplifier. Analog Integr Circ Sig Process 63, 425–432 (2010). https://doi.org/10.1007/s10470-009-9425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9425-4

Keywords

Navigation