Skip to main content
Log in

Linear transconductor with flipped voltage follower in 130 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a modified design method for linear transconductor circuit in 130 nm CMOS technology to improve linearity, robustness against process induced threshold voltage variability and reduce harmonic distortion. Source follower in the adaptively biased differential pair (ABDP) linear transconductor circuit is replaced with flipped voltage follower to improve the efficiency of the tail current source, which is connected to a conventional differential pair. The simulation results show the performance of the modified circuit also has better speed, noise performance and common mode rejection ratio compared to the ABDP circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sengupta, S. (2005). Adaptively biased linear transconductor. IEEE Transaction on Circuits and Systems (1 regular papers), 52(11), 2369–2375.

    Article  Google Scholar 

  2. Sanchez-Sinencio, E., & Silva, J. (2000). CMOS transconductance amplifiers, architectures and active filters: A tutorial, Proc. Proceedings of the IEE Circuits Devices and Systems, 147(1), 3–12.

    Article  Google Scholar 

  3. Krummenacher, F., & Joehl, N. (1998). A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE Journal of Solid-State Circuits, 23(3), 750–758.

    Article  Google Scholar 

  4. Czarnul, Z., & Tagaki, S. (1990). Design of linear tunable CMOS differential transconductor cells. Electronics Letters, 26(21), 1809–1810.

    Article  Google Scholar 

  5. Ismail, A. M., & Soliman, A. M. (2000). Novel CMOS wide-linear-range transconductor amplifier. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(8), 1248–1253.

    Article  Google Scholar 

  6. Nedungadi, A., & Viswanathan, T. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, CAS-31(10), 891–894.

    Article  Google Scholar 

  7. Kuo, K. C., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 937–943.

    Article  Google Scholar 

  8. Wang, Z., & Guggenbuhl, W. (1990). A voltage-controllable linear MOS transconductor using bias offset technique. IEEE Journal of Solid-State Circuits, 25(1), 315–317.

    Article  Google Scholar 

  9. Seevinck, E., & Wassenaar, R. F. (1987). A versatile CMOS linear transconductor/square-law function circuit. IEEE Journal of Solid-State Circuits, SC-22(3), 366–377.

    Article  Google Scholar 

  10. Ramírez-Angulo, J., Carvajal, R. G., Torralba, A., Galan, J., Vega-Leal, A. P., & Tombs, J. (2005). The flipped voltage follower: A useful cell for low voltage low-power circuit design. IEEE Transaction on Circuits and systems (1 regular papers), 52(7), 1276–1290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Ajayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajayan, K.R., Bhat, N. Linear transconductor with flipped voltage follower in 130 nm CMOS. Analog Integr Circ Sig Process 63, 321–327 (2010). https://doi.org/10.1007/s10470-009-9396-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9396-5

Keywords

Navigation