Skip to main content
Log in

The Representation Type of Determinantal Varieties

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves \(\mathcal {E}\) of arbitrary high rank on a general standard (resp. linear) determinantal scheme \(X\subset \mathbb {P}^{n}\) of codimension c ≥ 1, nc ≥ 1 and defined by the maximal minors of a t × (t + c−1) homogeneous matrix \(\mathcal {A}\). The sheaves \(\mathcal {E}\) are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type provided the degrees of the entries of the matrix \(\mathcal {A}\) satisfy some weak numerical assumptions; and (2) we determine values of t, n and nc for which a linear standard determinantal scheme \(X\subset \mathbb {P}^{n}\) is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e. X is of Ulrich wild representation type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.: Vector bundles over elliptic curves. Proc. London Math. Soc. 7, 414–452 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bănică, C: Smooth reflexive sheaves, preprint series in Math 17 (1989)

  3. Brennan, J., Herzog, J., Ulrich, B.: Maximally generated Cohen-Macaulay modules. Math. Scandinavica 61, 181–203 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruns, W., Römer, T., Wiebe, A: Initial algebras of determinantal rings, Cohen-Macaulay and Ulrich ideals. Michigan Math. J. 53(1), 71–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruns, W., Vetter, U.: Determinantal rings, Springer-Verlag, Lectures Notes in Mathematics 1327 New York/Berlin (1988)

  6. Buchweitz, R., Greuel, G., Schreyer, F.O.: Cohen-Macaulay modules on hypersurface singularities, II. Invent. Math. 88(1), 165–182 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casanellas, M., Hartshorne, R.: ACM Bundles on cubic surfaces. J. European Math. Soc. 13, 709–731 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casanellas, M., Hartshorne, R.: Gorenstein biliaison and ACM sheaves. J. Algebra 278, 314–341 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casanellas, M., Hartshorne, R.: Stable Ulrich bundles. Internat. J. Math. 23 (8), 1250083–1250133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casnati, G.: Examples of smooth surfaces in \(\mathbb {P}^{3}\) which are Ulrich wild Preprint (2016)

  11. Costa, L., Miró-Roig, R.M.: GL(V)-invariant Ulrich bundles on grassmannians. Math. Annalen 361, 443–457 (2015). doi:10.1007/s00208-014-1076-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Costa, L., Miró-Roig, R. M., Pons-Llopis, J.: The representation type of Segre varieties. Adv. in Math. 230, 1995–2013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drozd, Y., Greuel, G.M.: Tame and wild projective curves and classification of vector bundles, vol. 246 (2001)

  14. Ein, L.: On the Cohomology of projective Cohen-Macaulay determinantal varieties of \(\mathbb {P}^{n}\), in Geometry of complex projective varieties (Cetraro, 1990), 143–152, Seminars and Conferences 9 Mediterranean Press (1993)

  15. Eisenbud, D.: Commutative Algebra. With a view toward algebraic geometry, Springer-Verlag, Graduate Texts in Mathematic 150 (1995)

  16. Eisenbud, D., Herzog, J.: The classification of homogeneous Cohen-Macaulay rings of finite representation type. Math. Ann. 280(2), 347–352 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eisenbud, D., Schreyer, F.: Boij-Söderberg Theory, combinatorial aspects of commutative algebra and algebraic geometry, In: Proceeding of the Abel Symposium (2009)

  18. Eisenbud, D., Schreyer, F., Weyman, J.: Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc 16, 537–579 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Faenzi, D., Fania, M.L.: On the Hilbert scheme of determinantal subvarieties. Math. Res. Lett. 21(2), 297–311 (2014). arXiv:1012.4692v1

    Article  MathSciNet  MATH  Google Scholar 

  20. Faenzi, D., Malaspina, F.: Surfaces of minimal degree of tame and wild representation type. arXiv:1409.4892v2

  21. Faenzi, D., Pons-Llopis, J.: The CM representation type of projective varieties. arXiv:1504.03819

  22. Harris, J.: The genus of space curves. Math. Ann 249(3), 191–204 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horrocks, G.: Vector bundles on the punctual spectrum of a local ring. Proc. London Math. Soc. 14, 689–713 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grayson, D., Stillman, M.: Macaulay 2-a software system for algebraic geometry and commutative algebra, available at http://www.math.uiuc.edu/Macaulay2/

  25. Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North Holland, Amsterdam (1968)

  26. Kleppe, J.O.: Families of artinian and low dimensional determinantal rings. arXiv:1506.08087

  27. Kleppe, J.O., Miró-Roig, R.M.: Dimension of families of determinantal schemes. Trans A.M.S. 357, 2871–2907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kleppe, J.O., Miró-Roig, R. M.: Families of determinantal schemes. PAMS 139, 3831–3843 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kleppe, J.O., Miró-Roig, R.M.: On the normal sheaf of determinantal varieties. J. Reine Angew. Math. 719, 173–209 (2016). doi:10.1515/crelle-2014-0041

    MathSciNet  MATH  Google Scholar 

  30. Kirby, D.: A sequence of complexes associated with a matrix. J. London Math. Soc. 7, 523–530 (1973)

    MathSciNet  MATH  Google Scholar 

  31. López, A.: Noether-lefschetz Theory and the Picard group of projective surfaces, Memoirs A.M. 438 (1991)

  32. Miró-Roig, R.M.: Determinantal Ideals, Birkhaüser, Progress in Math. 264 (2008)

  33. Miró-Roig, R.M.: The representation type of rational normal scrolls. Rendiconti di Palermo 62, 153–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miró-Roig, R.M.: On the representation type of a projective variety. Proc. A.M.S 143, 61–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miró-Roig, R.M., Pons-Llopis, J.: N-dimensional Fano varieties of wild representation type. J. Pure Appl. Alg. 218, 1867–1884 (2014). doi:10.1016/j.jpaa.2014.02.011

    Article  MathSciNet  MATH  Google Scholar 

  36. Miró-Roig, R.M., Pons-Llopis, J.: Representation type of rational ACM surfaces \(X\subseteq \mathbb {P}^{4}\). Algebr. Represent. Theory 16, 1135–1157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pons-Llopis, J., Tonini, F.: ACM Bundles on Del Pezzo surfaces. Le Matematiche 64, 177–211 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Tovpyha, O.: Graded Cohen-Macaulay rings of wild representation type. arXiv:1212.6557

  39. Ulrich, B.: Gorenstein rings and modules with high number of generators. Math. Z. 188, 23–32 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Walter, C.: Transversality theorems in general characteristic and arithmetically Buchsbaum schemes. Internat. J. Math. 5(4), 609–617 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Miró-Roig.

Additional information

Presented by Henning Krause.

Rosa M. Miró-Roig Partially supported by MTM2013-45075-P

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleppe, J.O., Miró-Roig, R.M. The Representation Type of Determinantal Varieties. Algebr Represent Theor 20, 1029–1059 (2017). https://doi.org/10.1007/s10468-017-9673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9673-4

Keywords

Mathematics Subject Classification (2010)

Navigation