Skip to main content
Log in

Pseudo-Gibbs sampler for discrete conditional distributions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Conditionally specified models offers a higher level of flexibility than the joint approach. Regression switching in multiple imputation is a typical example. However, reasonable-seeming conditional models are generally not coherent with one another. Gibbs sampler based on incompatible conditionals is called pseudo-Gibbs sampler, whose properties are mostly unknown. This article investigates the richness and commonalities among their stationary distributions. We show that Gibbs sampler replaces the conditional distributions iteratively, but keep the marginal distributions invariant. In the process, it minimizes the Kullback–Leibler divergence. Next, we prove that systematic pseudo-Gibbs projections converge for every scan order, and the stationary distributions share marginal distributions in a circularly fashion. Therefore, regardless of compatibility, univariate consistency is guaranteed when the orders of imputation are circularly related. Moreover, a conditional model and its pseudo-Gibbs distributions have equal number of parameters. Study of pseudo-Gibbs sampler provides a fresh perspective for understanding the original Gibbs sampler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chen, S.-H., Ip, E. H., Wang, Y. J. (2011). Gibbs ensembles for nearly compatible and incompatible conditional models. Computational Statistics and Data Analysis, 55, 1760–1769.

  • Chen, S.-H., Ip, E. H., Wang, Y. J. (2013). Gibbs ensembles for incompatible dependence networks. WIREs Computational Statistics, 5, 478–485.

  • Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 3, 146–158.

  • Darroch, J. N., Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. Annals of Mathematical Statistics, 43, 1470–1480.

  • Drechsler, J., Rässler, S. (2008). Does convergence really matter? In Shalabh, C. Heumann (Eds.), Recent advances in linear models and related areas (pp. 341–355). Heidelberg: Physica-Verlag.

  • Gelman, A., Raghunathan, T. E. (2001). Comment on “Conditionally specified distributions” by B.C. Arnold, E. Castillo and J.M. Sarabia. Statistical Science, 16, 268–269.

  • Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1, 49–75.

  • Hughes, R. A., White, I. R., Seaman, S. R., Cappenter, J. R., Tilling, K., Sterne, J. A. C. (2014). Joint modelling rationale for chained equations. BMC Medical Research Methodology, 14, 28.

  • Kuo, K.-L., Wang, Y. J. (2011). A simple algorithm for checking compatibility among discrete conditional distributions. Computational Statistics and Data Analysis, 55, 2457–2462.

  • van Buuren, S., Boshuizen, H. C., Knook, D. L. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681–94.

  • van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049–1064.

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology, Taiwan (MOST 104-2118-M-390-001 and MOST 105-2118-M-390-002). The authors thank two referees and one Associated Editor for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchung J. Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, KL., Wang, Y.J. Pseudo-Gibbs sampler for discrete conditional distributions. Ann Inst Stat Math 71, 93–105 (2019). https://doi.org/10.1007/s10463-017-0625-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-017-0625-x

Keywords

Navigation