Skip to main content
Log in

Isoseparation and robustness in parametric Bayesian inference

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces a new family of local density separations for assessing robustness of finite-dimensional Bayesian posterior inferences with respect to their priors. Unlike for their global equivalents, under these novel separations posterior robustness is recovered even when the functioning posterior converges to a defective distribution, irrespectively of whether the prior densities are grossly misspecified and of the form and the validity of the assumed data sampling distribution. For exponential family models, the local density separations are shown to form the basis of a weak topology closely linked to the Euclidean metric on the natural parameters. In general, the local separations are shown to measure relative roughness of the prior distribution with respect to its corresponding posterior and provide explicit bounds for the total variation distance between an approximating posterior density to a genuine posterior. We illustrate the application of these bounds for assessing robustness of the posterior inferences for a dynamic time series model of blood glucose concentration in diabetes mellitus patients with respect to alternative prior specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cadre B. (2004) Asymptotic Bayesian robustness in Bayesian decision theory. The Annals of Statistics 32: 1341–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Andrade J.A.A., O’Hagan A. (2006) Bayesian robustness modelling using regularly varying distributions. Bayesian Analysis 1: 169–188

    Article  MathSciNet  Google Scholar 

  • Berger J. O. (1992) Recent methodological advances in robust Bayesian inference (with discussion). In: Bernardo J.M., Berger J.O., Dawid A.P., Smith A.F.M. (eds) Bayesian Statistics 4, Proceedings of the Fourth Valencia International Meeting. Clarendon Press, Oxford, pp 495–496 [In discussion of Wasserman, L.(1992b)]

    Google Scholar 

  • Berger J.O., Wolpert R.L. (1984) The likelihood principle. In: Gupta S.S. (eds) IMS Lecture Notes (Vol. 6.) Hayward, CA: IMS

    Google Scholar 

  • Bernardo J.M., Smith A.F.M. (1996) Bayesian theory. Wiley, Chichester

    Google Scholar 

  • Copas J., Eguchi S. (2010) Likelihood for statistically equivalent models. Journal of the Royal Statistical Society B 72: 193–217

    Article  MathSciNet  Google Scholar 

  • Daneseshkhah, A. (2004). Estimation in causal graphical models. PhD Thesis, University of Warwick, UK.

  • Dawid A. P. (1973) Posterior expectations for large observations. Biometrika 60: 664–667

    Article  MathSciNet  MATH  Google Scholar 

  • De Robertis, L. (1978). The use of partial prior knowledge in Bayesian inference. PhD Thesis, Yale University, CT, USA.

  • Fernandez C., Osiewalski J., Steel M. (1996) Classical and Bayesian inference robustness in multivariate regression models. Journal of the American Statistical Association 92: 1434–1444

    Article  MathSciNet  Google Scholar 

  • Gelfand A.E., Smith A.F.M. (1990) Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85: 398–409

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer C.J., Thompson E.A. (1995) Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association 90: 909–920

    Article  MATH  Google Scholar 

  • Ghosh J.K., Ramamoorthi R.V. (2003) Bayesian nonparametrics. Springer Series in Statistics. Springer, New York

    Google Scholar 

  • Gustafson P. (1996) Aspects of Bayesian robustness in hierarchical models. In: Berger J.O., Betro B., Moreno E., Pericchi L.R., Ruggeri F., Salinetti G., Wasserman L. (eds) IMS Lecture Notes (Vol. 29). Hayward, CA: IMS, pp 81–100

    Google Scholar 

  • Gustafson P., Bose S. (1996) Aspects of Bayesian robustness in hierarchical models. In: Berger J.O., Betro B., Moreno E., Pericchi L.R., Ruggeri F., Salinetti G., Wasserman L. (eds) IMS Lecture Notes (Vol. 29). Hayward, CA: IMS, pp 63–80

    Google Scholar 

  • Gustafson P., Wasserman L. (1995) Local sensitivity diagnostics for Bayesian inference. The Annals of Statistics 23: 2153–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P.J. (1997) Robustness: where are we now?. In: Dodge Y. (eds) IMS Lecture Notes (Vol. 31). Hayward, CA: IMS, pp 487–498

    Google Scholar 

  • Kadane J., Srinivasan C., Salinetti G. (1996) Bayesian robustness and stability. In: Berger J.O., Betro B., Moreno E., Pericchi L.R., Ruggeri F., Salinetti G., Wasserman L. (eds) IMS Lecture Notes (Vol. 29). Hayward, CA IMS, pp 81–100

    Google Scholar 

  • Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983) Optimization by Simulated Annealing. Science 220: 671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Martin J., Rios Insua D., Ruggeri F. (1998) Issues in Bayesian loss robustness. The Indian Journal of Statistics (A) 60: 405–416

    MathSciNet  MATH  Google Scholar 

  • Monhor D. (2007) A Chebyshev inequality for multivariate normal distributions. Probability in the Engineering and Informational Sciences 21: 289–300

    Article  MathSciNet  MATH  Google Scholar 

  • Moran P. A. P. (1968) An introduction to probability theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  • O’Hagan A. (1979) On outlier rejection phenomena in Bayesian inference. Journal of the Royal Statistical Society B 41: 358–367

    MathSciNet  MATH  Google Scholar 

  • O’Hagan A. (2006) Eliciting expert beliefs in substantial practical applications. The Statistician 47: 21–35

    Google Scholar 

  • O’Hagan A., Forster J. (2004) Bayesian inference. In Kendall’s Advanced Theory of Statistics (Vol. 2B). Arnold, London

    Google Scholar 

  • Peterka V. (1981) Bayesian system identification. In: Eykhoff P. (eds) Trends and Progress in System Identification. Pergamon Press, Oxford, pp 239–304

    Google Scholar 

  • Poole A., Raftery A. (2000) Inference for deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association 95: 1244–1255

    Article  MathSciNet  MATH  Google Scholar 

  • Schervish M. J. (1995) Theory of statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Smith J. Q. (1979) A generalisation of the Bayesian steady forecasting model. Journal of the Royal Statistical Society B 41: 375–387

    MATH  Google Scholar 

  • Smith J.Q. (2007) Local robustness of Bayesian parametric inference and observed likelihoods CRiSM. Research Report 07-09. University of Warwick, UK

    Google Scholar 

  • Tong Y.L. (1980) Probability inequalities in multivariate distributions. Academic Press, New York

    MATH  Google Scholar 

  • Wasserman L. (1992) Invariance properties of density ratio priors. The Annals of Statistics 20: 2177–2182

    Article  MathSciNet  MATH  Google Scholar 

  • West M., Harrison P.J. (1997) Bayesian forecasting and dynamic models. In Springer Series in Statistics. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Rigat.

About this article

Cite this article

Smith, J.Q., Rigat, F. Isoseparation and robustness in parametric Bayesian inference. Ann Inst Stat Math 64, 495–519 (2012). https://doi.org/10.1007/s10463-011-0334-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-011-0334-9

Keywords

Navigation