Skip to main content
Log in

Bayesian estimation of a covariance matrix with flexible prior specification

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Bayesian analysis for a covariance structure has been in use for decades. The commonly adopted Bayesian setup involves the conjugate inverse Wishart prior specification for the covariance matrix. Here we depart from this approach and adopt a novel prior specification by considering a multivariate normal prior for the elements of the matrix logarithm of the covariance structure. This specification allows for a richer class of prior distributions for the covariance structure with respect to strength of beliefs in prior location hyperparameters and the added ability to model potential correlation amongst the covariance structure. We provide three computational methods for calculating the posterior moment of the covariance matrix. The moments of interest are calculated based upon computational results via Importance sampling, Laplacian approximation and Markov Chain Monte Carlo/Metropolis–Hastings techniques. As a particular application of the proposed technique we investigate educational test score data from the project talent data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellman R. (1970) Introduction to matrix analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Berger J.O. (1985) Statistical decision theory and Bayesian analysis (2nd ed). Springer, New York

    MATH  Google Scholar 

  • Chen C.-F. (1979) Bayesian inference for a normal dispersion matrix and its application to stochastic multiple regression analysis. Journal of the Royal Statistical Society: Series B (Methodological) 41(2): 235–248

    MathSciNet  MATH  Google Scholar 

  • Chiu T.Y.M., Leonard T., Tsui K.-W. (1996) The matrix logarithmic covariance model. Journal of the American Statistical Association 91(433): 198–210

    Article  MathSciNet  MATH  Google Scholar 

  • Cooley W.W., Lohnes P.R. (1971) Multivariate data analysis. Wiley, New York

    MATH  Google Scholar 

  • Dawid A.P. (1981) Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika 68(1): 265–274

    Article  MathSciNet  MATH  Google Scholar 

  • Dey D.K., Srinivasan C. (1985) Estimation of a covariance matrix under stein’s loss. The Annals of Statistics 13(4): 1581–1591

    Article  MathSciNet  MATH  Google Scholar 

  • Dickey J., Lindley D., Press S. (1985) Bayesian estimation of the dispersion matrix of a multivariate normal distribution. Communications in Statistics Theory and Methods 14(5): 1019–1034

    Article  MathSciNet  MATH  Google Scholar 

  • Evans I.G. (1965) Bayesian estimation of parameters of a multivariate normal distribution. Journal of the Royal Statistical Society: Series B (Methodological) 27(2): 279–283

    MathSciNet  MATH  Google Scholar 

  • Flanagan, J. C., Tiedeman, D. V. (1979). Project Talent public use file [computer file]. Technical report, American Institutes for Research [producer], Palo Alto, California.

  • Gelman A., Carlin J.B., Stern H.S., Rubin D.B. (2005) Bayesian data analysis (2nd ed). Chapman & Hall, London

    Google Scholar 

  • Hsu, C. W. (2001). Bayesian estimation of a covariance matrix and its application to mixed effects models. PhD thesis, University of California Santa Barbara, Santa Barbara, California.

  • Kass R.E., Tierney L., Kadane J.B. (1989) Approximate methods for assessing influence and sensitivity in Bayesian analysis. Biometrika 76(4): 663–674

    Article  MathSciNet  MATH  Google Scholar 

  • Laplace P.S. (1986) Memoir on the probability of the causes of events. Statistical Science 1(3): 364–378

    Article  MathSciNet  Google Scholar 

  • Leonard T. (1982) A simple predicitive density function: Comment. Journal of the American Statistical Association 77(379): 657–658

    Article  MathSciNet  Google Scholar 

  • Leonard T., Hsu J.S.J. (1992) Bayesian inference for a covariance matrix. The Annals of Statistics 20(4): 1669–1696

    Article  MathSciNet  MATH  Google Scholar 

  • Leonard T., Hsu J.S.J. (1999) Bayesian methods. Cambridge University Press, New York

    MATH  Google Scholar 

  • Leonard T., Hsu J.S.J., Hsu J.S.J., Hsu J.S.J. (1989) Bayesian marginal inference. Journal of the American Statistical Association 84(408): 1051–1058

    Article  MathSciNet  Google Scholar 

  • Leonard T., Hsu J.S.J., Tsui K.-W., Murray J.F. (1994) Bayesian and likelihood inference from equally weighted mixtures. Annals of the Institute of Statistical Mathematics 46(2): 203–220

    Article  MathSciNet  MATH  Google Scholar 

  • Ni S., Sun D. (2005) Bayesian estimates for vector autoregressive models. Journal of Business and Economic Statistics 23(1): 105–117

    Article  MathSciNet  Google Scholar 

  • Ogata Y. (1989) A Monte Carlo method for high dimensional integration. Numerische Mathematik 55(2): 137–157

    Article  MathSciNet  MATH  Google Scholar 

  • Robert C.P., Casella G. (2004) Monte Carlo statistical methods. Springer, New York

    MATH  Google Scholar 

  • Rubinstein R.Y. (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  • Stigler S.M. (1986) Laplace’s 1774 memoir on inverse probability. Statistical Science 1(3): 359–363

    Article  MathSciNet  Google Scholar 

  • Tierney L., Kadane J.B. (1986) Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81(393): 82–86

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L., Kass R.E., Kadane J.B. (1989) Fully exponential laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association 84(407): 710–716

    Article  MathSciNet  MATH  Google Scholar 

  • Yang R., Berger J.O. (1994) Estimation of a covariance matrix using the reference prior. The Annals of Statistics 22(3): 1195–1211

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marick S. Sinay.

About this article

Cite this article

Hsu, CW., Sinay, M.S. & Hsu, J.S.J. Bayesian estimation of a covariance matrix with flexible prior specification. Ann Inst Stat Math 64, 319–342 (2012). https://doi.org/10.1007/s10463-010-0314-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-010-0314-5

Keywords

Navigation