Skip to main content
Log in

Minimal average degree aberration and the state polytope for experimental designs

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For a particular experimental design, there is interest in finding which polynomial models can be identified in the usual regression set up. The algebraic methods based on Gröbner bases provide a systematic way of doing this. The algebraic method does not, in general, produce all estimable models but it can be shown that it yields models which have minimal average degree in a well-defined sense and in both a weighted and unweighted version. This provides an alternative measure to that based on “aberration” and moreover is applicable to any experimental design. A simple algorithm is given and bounds are derived for the criteria, which may be used to give asymptotic Nyquist-like estimability rates as model and sample sizes increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babson E., Onn S., Thomas R. (2003) The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Advances in Applied Mathematics 30(3): 529–544

    Article  MATH  MathSciNet  Google Scholar 

  • Balakrishnan N., Yang P. (2006) Connections between the resolutions of general two-level factorial designs. Annals of the Institute of Statistical Mathematics 58: 595–608

    Article  MATH  MathSciNet  Google Scholar 

  • Berstein Y., Lee J., Maruri-Aguilar H., Onn S., Riccomagno E., Weismantel R., Wynn H. (2008) Nonlinear matroid optimization and experimental design. SIAM Journal on Discrete Mathematics 22(3): 901–919

    Article  MATH  MathSciNet  Google Scholar 

  • Box G., Hunter J. (1961) The 2k-p fractional factorial designs. I. Technometrics 3: 311–351

    Article  MathSciNet  Google Scholar 

  • Box G., Hunter J. (1961) The 2k-p fractional factorial designs. II. Technometrics 3: 449–458

    Article  MathSciNet  Google Scholar 

  • Box G., Wilson K. (1951) On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B 13(1): 1–45

    MathSciNet  Google Scholar 

  • Buchberger, B. (1966). On finding a vector space basis of the residue class ring modulo a zero dimensional polynomial ideal (in German), Ph.D. thesis. Department of Mathematics, University of Innsbruck.

  • Caboara, M., Pistone, G., Riccomagno, E., Wynn, H. (1997). The fan of an experimental design. SCU Research Report 33. Department of Statistics, University of Warwick.

  • Chen, H., Hedayat, A. S. (1998). Some recent advances in minimum aberration designs. In New developments and applications in experimental design (Seattle, WA, 1997). IMS lecture notes monography series (Vol. 34, pp. 186–198). Hayward: Institute of Mathematical Statistics.

  • Chen H.H., Cheng C.-S. (2004) Aberration, estimation capacity and estimation index. Statistica Sinica 14(1): 203–215

    MATH  MathSciNet  Google Scholar 

  • Cheng C.-S., Mukerjee R. (1998) Regular fractional factorial designs with minimum aberration and maximum estimation capacity. The Annals of Statistics 26(6): 2289–2300

    Article  MATH  MathSciNet  Google Scholar 

  • CoCoATeam. (2007). CoCoA: A system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it.

  • Corteel S., Rémond G., Schaeffer G., Thomas H. (1999) The number of plane corner cuts. Advances in Applied Mathematics 23(1): 49–53

    Article  MATH  MathSciNet  Google Scholar 

  • Cox D., Little J., O’Shea D. (1997) Ideals, varieties, and algorithms (2nd ed). Springer, New York

    Google Scholar 

  • Cox D., Little J., O’Shea D. (2005) Using algebraic geometry, graduate texts in mathematics (Vol. 185, 2nd ed). Springer, New York

    Google Scholar 

  • Evangelaras H., Koukouvinos C. (2006) A comparison between the Gröbner bases approach and hidden projection properties in factorial designs. Computational Statistics & Data Analysis 50(1): 77–88

    Article  MATH  MathSciNet  Google Scholar 

  • Faugère J., Gianni P., Lazard D., Mora T. (1993) Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16(4): 329–344

    Article  MATH  MathSciNet  Google Scholar 

  • Fries A., Hunter W. (1980) Minimum aberration 2k-p designs. Technometrics 22(4): 601–608

    Article  MATH  MathSciNet  Google Scholar 

  • Fukuda K., Jensen A.N., Thomas R.R. (2007) Computing Gröbner fans. Mathematics of Computation 76(260): 2189–2212 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Greuel, G., Pfister, G., Schönemann, H. (2005). Singular 3.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de.

  • Holliday T., Pistone G., Riccomagno E., Wynn H. (1999) The application of computational algebraic geometry to the analysis of designed experiments: A case study. Computational Statistics 14(2): 213–231

    Article  MATH  MathSciNet  Google Scholar 

  • Li W., Lin D.K.J., Ye K.Q. (2003) Optimal foldover plans for two-level nonregular orthogonal designs. Technometrics 45(4): 347–351

    Article  MathSciNet  Google Scholar 

  • Maruri-Aguilar, H. (2007). Algebraic statistics in experimental design. Ph.D. thesis. Department of Statistics, University of Warwick.

  • McKay M.D., Beckman R.J., Conover W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239–245

    Article  MATH  MathSciNet  Google Scholar 

  • Monagan M.B., Geddes K.O., Heal K.M., Labahn G., Vorkoetter S.M., McCarron J., DeMarco P. (2005) Maple 10 programming guide. Maplesoft, Waterloo, ON

    Google Scholar 

  • Mora T., Robbiano L. (1988) The Gröbner fan of an ideal. Journal of Symbolic Computation 6(2–3): 183–208 (Computational aspects of commutative algebra)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller I. (2003) Corner cuts and their polytopes. Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry 44(2): 323–333

    MATH  MathSciNet  Google Scholar 

  • Onn S., Sturmfels B. (1999) Cutting corners. Advances in Applied Mathematics 23(1): 29–48

    Article  MATH  MathSciNet  Google Scholar 

  • Peixoto J. (1987) Hierarchical variable selection in polynomial regression models. The American Statistician 41(4): 311–313

    Article  Google Scholar 

  • Pistone G., Riccomagno E., Wynn H.P. (2001) Algebraic statistics, monographs on statistics and applied probability (Vol. 89). Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Pistone, G., Riccomagno, E., Rogantin, M. (2008). Algebraic statistics methods in DOE (with a contribution by Maruri-Aguilar, H.). In L. Pronzato, A. A. Zhigljavsky (Eds.), In search for optimality in optimization and statistics. Berlin: Springer.

  • Pistone G., Wynn H. (1996) Generalised confounding with Gröbner bases. Biometrika 83(3): 653–666

    Article  MATH  MathSciNet  Google Scholar 

  • Sturmfels B. (1996) Gröbner bases and convex polytopes. University lecture series (Vol 8). American Mathematical Society, Providence

    Google Scholar 

  • Wagner U. (2002) On the number of corner cuts. Advances in Applied Mathematics 29(2): 152–161

    Article  MATH  MathSciNet  Google Scholar 

  • Wang J.C., Wu C.-F.J. (1995) A hidden projection property of Plackett–Burman and related designs. Statistica Sinica 5(1): 235–250

    MATH  MathSciNet  Google Scholar 

  • Wu H., Wu C.F.J. (2002) Clear two-factor interactions and minimum aberration. The Annals of Statistics 30(5): 1496–1511

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Maruri-Aguilar.

About this article

Cite this article

Berstein, Y., Maruri-Aguilar, H., Onn, S. et al. Minimal average degree aberration and the state polytope for experimental designs. Ann Inst Stat Math 62, 673–698 (2010). https://doi.org/10.1007/s10463-010-0291-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-010-0291-8

Keywords

Navigation