Skip to main content
Log in

Abstract

The wavelet variance provides a scale-based decomposition of the process variance for a time series or a random field and has been used to analyze various multiscale processes. Examples of such processes include atmospheric pressure, deviations in time as kept by atomic clocks, soil properties in agricultural plots, snow fields in the polar regions and brightness temperature maps of South Pacific clouds. In practice, data collected in the form of a time series or a random field often suffer from contamination that is unrelated to the process of interest. This paper introduces a scale-based contamination model and describes robust estimation of the wavelet variance that can guard against such contamination. A new M-estimation procedure that works for both time series and random fields is proposed, and its large sample theory is deduced. As an example, the robust procedure is applied to cloud data obtained from a satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett M.S., Kendall D.G. (1946) The statistical analysis of variance-homogeneity and the logarithmic transformation. Supplement to the Journal of the Royal Statistical Society 8: 128–138

    Article  MathSciNet  Google Scholar 

  • Beran J. (1991) M-estimators of location for data with slowly decaying correlations. Journal of the American Statistical Association 86: 704–708

    Article  MathSciNet  MATH  Google Scholar 

  • Blackman R.B., Tukey J.W. (1958) The measurement of power spectra. Dover, New York

    Google Scholar 

  • Bretherton C.S., Uttal T., Fairall C.W., Yuter S., Weller R., Baumgardner D., Comstock K., Wood R., Raga G. (2004) The EPIC 2001 stratocumulus study. Bulletin of the American Meteorological Society 85: 967–977

    Article  Google Scholar 

  • Breuer P., Major P. (1983) Central limit theorems for nonlinear functionals of Gaussian fields. Journal of Multivariate Analysis 13: 425–441

    Article  MathSciNet  MATH  Google Scholar 

  • Chiann C., Morettin P.A. (1998) A wavelet analysis for time series. Nonparametric Statistics 10: 1–46

    Article  MathSciNet  MATH  Google Scholar 

  • Craigmile P.F. (2003) Simulating a class of stationary Gaussian processes using the Davies–Harte algorithm, with application to long memory processes. Journal of Time Series Analysis 24: 505–511

    Article  MathSciNet  MATH  Google Scholar 

  • Croux C., Haesbroeck G. (2000) Principal component analysis based on robust estimators of the covariance or correlation. Biometrika 87: 603–618

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I. (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Gao H.-Y. (1997) Choice of thresholds for wavelet shrinkage estimate of the spectrum. Journal of Time Series Analysis 18: 231–251

    Article  MathSciNet  MATH  Google Scholar 

  • Greenhall C.A., Howe D.A., Percival D.B. (1999) Total variance, an estimator of long-term frequency stability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46: 1183–1191

    Article  Google Scholar 

  • Hannan E.J. (1970) Multiple time series. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  • Kay S.M. (1981) Efficient generation of colored noise. Proceedings of the IEEE 69: 480–481

    Article  Google Scholar 

  • Koul H.L., Surgailis D. (1997) Asymptotic expansion of M-estimators with long-memory errors. The Annals of Statistics 25: 818–850

    Article  MathSciNet  MATH  Google Scholar 

  • Labat D., Ababou R., Mangin A. (2001) Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: The case of licq–atherey karstic system (France). Ground Water 39: 605–615

    Article  Google Scholar 

  • Lark R.M., Webster R. (2001) Changes in variance and correlation of soil properties with scale and location: Analysis using an adapted maximal overlap discrete wavelet transform. European Journal of Soil Science 52: 547–562

    Article  Google Scholar 

  • Maronna R.A. (1976) Robust M-estimators of multivariate location and scatter. The Annals of Statistics 4: 51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Maronna R.A., Martin D.R., Yohai V.J. (2006) Robust statistics: Theory and methods. Wiley, Chichester, England

    Book  MATH  Google Scholar 

  • Massel S.R. (2001) Wavelet analysis for processing of ocean surface wave records. Ocean Engineering 28: 957–987

    Article  Google Scholar 

  • Mondal, D., Percival, D. B. (2009). Wavelet variance analysis for random fields (submitted).

  • Nason G.P., von Sachs R., Kroisandt G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society. Series B, Methodological 62: 271–292

    Article  Google Scholar 

  • Pelgrum H., Schmugge T., Rango A., Ritchie J., Kustas B. (2000) Length-scale analysis of surface albedo, temperature, and normalized difference vegetation index in desert grassland. Water Resources Research 36: 1757–1766

    Article  Google Scholar 

  • Percival D.B. (1995) On estimation of the wavelet variance. Biometrika 82: 619–631

    Article  MathSciNet  MATH  Google Scholar 

  • Percival D.B., Walden A.T. (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Pichot V., Gaspoz J.M., Molliex S., Antoniadis A., Busso T., Roche F., Costes F., Quintin L., Lacour J. R., Barthélémy J.C. (1999) Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. Journal of Applied Physiology 86: 1081–1091

    Google Scholar 

  • Robinson P.M. (1986) Discussion: Influence functionals for time series. The Annals of Statistics 14: 832–834

    Article  Google Scholar 

  • Rybák J., Dorotovič I. (2002) Temporal variability of the coronal green-line index (1947–1998). Solar Physics 205: 177–187

    Article  Google Scholar 

  • Serroukh A., Walden A.T., Percival D.B. (2000) Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series. Journal of the American Statistical Association 95: 184–196

    Article  MathSciNet  MATH  Google Scholar 

  • Stevens B., Vali G., Comstock K., Wood R., van Zanten M.C., Austin P.H., Bretherton C.S., Lenschow D.H. (2005) Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bulletin of the American Meteorological Society 86: 51–57

    Article  Google Scholar 

  • Stigler S.M. (1977) Do robust estimators work with real data? Annals of Statistics 5: 1055–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Stoev S., Taqqu M.S. (2003) Wavelet estimation of the Hurst parameter in stable processes. In: Rangarajan D., Ding M. (eds) Processes with long range correlations: Theory and applications. Lecture notes in physics no 621. Springer, New York, pp 61–87

    Google Scholar 

  • Stoev S., Taqqu M.S., Park C., Michailidis G., Marron J.S. (2006) LASS: A tool for the local analysis of self-similarity. Computational Statistics and Data Analysis 50: 2447–2471

    Article  MathSciNet  MATH  Google Scholar 

  • Thall P.F. (1979) Huber-sense robust M-estimation of a scale parameter, with applications to the exponential distribution. Journal of the American Statistical Association 74: 147–152

    Article  MathSciNet  MATH  Google Scholar 

  • Torrence C., Compo G.P. (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61–78

    Article  Google Scholar 

  • Tsakiroglou E., Walden A.T. (2002) From Blackman–Tukey pilot estimators to wavelet packet estimators: A modern perspective on an old spectrum estimation idea. Signal Processing 82: 1425–1441

    Article  MATH  Google Scholar 

  • Tyler D.E. (1987) A distribution-free M-estimator of multivariate scatter. The Annals of Statistics 15: 234–251

    Article  MathSciNet  MATH  Google Scholar 

  • Unser M. (1995) Texture classification and segmentation using wavelet frame. IEEE Transactions on Image Processing 4: 1549–1560

    Article  Google Scholar 

  • Whitcher B.J., Guttorp P., Percival D.B. (2000) Wavelet analysis of covariance with application to atmospheric time series. Journal of Geophysical Research 105: 14941–14962

    Article  Google Scholar 

  • Whitcher B.J, Byers S.D., Guttorp P., Percival D.B. (2002) Testing for homogeneity of variance in time series: Long memory, wavelets and the Nile river. Water Resources Research 38: 1054–1070

    Article  Google Scholar 

  • Zhu Z., Stein M.L. (2002) Parameter estimation for fractional Brownian surfaces. Statistica Sinica 12: 863–883

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mondal.

About this article

Cite this article

Mondal, D., Percival, D.B. M-estimation of wavelet variance. Ann Inst Stat Math 64, 27–53 (2012). https://doi.org/10.1007/s10463-010-0282-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-010-0282-9

Keywords

Navigation