Skip to main content
Log in

A universal algebraic approach for conditional independence

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we show that elementary properties of joint probability density functions naturally induce a universal algebraic structure suitable for studying probabilistic conditional independence (PCI) relations. We call this algebraic system the cain. In the cain algebra, PCI relations are represented in equational forms. In particular, we show that the cain satisfies the axioms of the graphoid of Pearl and Paz (Advances in artificial intelligence. North-Holland, Amsterdam, 1987) and the separoid of Dawid (Ann. Math. Artif. Intell. 32:335–372, 2001), these axiomatic systems being useful for general probabilistic reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson S.A., Madsen J. (1998) Symmetry and lattice conditional independence in a multivariate normal distribution. Annals of Statistics, 26: 525–572

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson S.A., Perlman M.D. (1993) Lattice models for conditional independence in a multivariate normal distribution. Annals of Statistics, 21: 1318–1358

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson S.A., Perlman M.D. (1995) Testing lattice conditional independence models. Journal of Multivariate Analysis, 53: 18–38

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson S.A., Perlman M.D. (1995) Unbiasedness for the likelihood ratio test for lattice conditional independence models. Journal of Multivariate Analysis, 53: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson S.A., Madigan D., Perlman M.D., Triggs C.M. (1995) On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs. Journal of Statistical Planning and Inference, 48: 25–46

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson S.A., Madigan D., Perlman M.D., Triggs C.M. (1997) A graphical characterization of lattice conditional independence models. Annals of Mathematics and Artificial Intelligence 21: 27–50

    Article  MATH  MathSciNet  Google Scholar 

  • Birkhoff, G. (1967). Lattice theory (Vol. 25, 3rd ed.). New York: American Mathematical Society Colloquium Publications, American Mathematical Society.

  • Blyth T.S. (2005) Lattices and ordered algebraic structures. Springer, London

    MATH  Google Scholar 

  • Cox D., Little J., O’Shea D. (1997) Ideals, varieties and algorithms (2nd ed). Springer, New York

    Google Scholar 

  • Davey B.A., Priestley H.A. (2002) Introduction to lattices and order. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Dawid A.P. (1979) Conditional independence in statistical theory (with discussion). Journal of the Royal Statistical Society: Series B 41: 1–31

    MATH  MathSciNet  Google Scholar 

  • Dawid A.P. (1979) Some misleading arguments involving conditional independence. Journal of the Royal Statistical Society: Series B, 41: 249–252

    MathSciNet  Google Scholar 

  • Dawid A.P. (1980) A Bayesian look at nuisance parameters. In: Bernardo J.M., DeGroot M.H., Lindley D.V., Smith A.F.M. (Eds) (eds) Bayesian statistics.. Valencia University Press, Valencia, pp 167–184

    Google Scholar 

  • Dawid A.P. (1980) Conditional independence for statistical operations. Annals of Statistics, 8: 598–617

    Article  MATH  MathSciNet  Google Scholar 

  • Dawid A.P. (1985) Invariance and independence in multivariate distribution theory. Journal of Multivariate Analysis, 17: 304–315

    Article  MATH  MathSciNet  Google Scholar 

  • Dawid A.P. (1988) Conditional independence. In: Kotz S., Read C.B., Banks D.L.(Eds) (eds) Encyclopedia of statistical science (Vol. 2). Wiley, New York, pp 146–155

    Google Scholar 

  • Dawid A.P. (2001) Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence, 32: 335–372

    Article  MathSciNet  Google Scholar 

  • Dawid A.P., Evett I.W. (1997) Using a graphical method to assist the evaluation of complicated patterns of evidence. Journal of Forensic Sciences, 42: 226–231

    Google Scholar 

  • Dawid A.P., Lauritzen S.L. (1993) Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21: 1272–1317

    Article  MATH  MathSciNet  Google Scholar 

  • Dawid A.P., Mortera J. (1996) Coherent analysis of forensic identification evidence. Journal of the Royal Statistical Society: Series B, 58: 425–443

    MATH  MathSciNet  Google Scholar 

  • Dawid A.P., Studený M. (1999) Conditional products: an alternative approach to conditional independence. In: Heckerman D., Whittaker J.(Eds) (eds) Artificial intelligence and statistics (Vol 99).. Morgan Kaufmann, San Francisco, pp 32–40

    Google Scholar 

  • Freese R., Jez̆ek J., Nation J.B. (1995) Free lattices. Mathematical surveys and monographs. American Mathematical Society, Providence

    Google Scholar 

  • Galles D., Pearl J. (1997) Axioms of causal relevance. Artificial Intelligence, 97: 9–43

    Article  MATH  MathSciNet  Google Scholar 

  • Halmos P.R. (1974) Lectures on boolean algebras. Springer, New York

    MATH  Google Scholar 

  • Jipsen, P., Rose, H. (1992). Varieties of lattices. Lecture notes in mathematics (Vol. 1533). Springer: New York. http://www1.chapman.edu/~jipsen/JipsenRoseVoL.html.

  • Jónsson B., Kiefer J. (1962) Finite sublattices of a free lattice. Canadian Journal of Mathematics, 14: 487–497

    MATH  Google Scholar 

  • Lauritzen S.L. (1982) Lectures on contingency tables (2nd ed). University of Aalborg Press, Aalborg

    Google Scholar 

  • Lauritzen S.L. (1996) Graphical models. Clarendon, Oxford

    Google Scholar 

  • Lauritzen S.L., Dawid A.P., Larsen B.N., Leimer H.G. (1990) Independence properties of directed Markov fields. Networks, 20: 491–505

    Article  MATH  MathSciNet  Google Scholar 

  • Massam H., Neher E. (1998) Estimation and testing for lattice conditional independence models on Euclidean Jordan algebras. Annals of Statistics, 26: 1051–1082

    Article  MATH  MathSciNet  Google Scholar 

  • Nation, J. B. Notes on lattice, unpublished course notes. http://www.math.hawaii.edu/~jb/lat1-6.pdf.

  • Paz, A., Pearl, J. (1994). Axiomatic characterization of directed graphs. Technical Report R-234. Los Angeles: Cognitive Systems Laboratory, Computer Science Department, University of California.

  • Paz A., Pearl J., Ur S. (1996) A new characterization of graphs based on interception relations. Journal of Graph Theory, 22: 125–136

    Article  MATH  MathSciNet  Google Scholar 

  • Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Pearl J. (2000) Causality—models, reasoning and inference. Cambridge University Press, New York

    MATH  Google Scholar 

  • Pearl J., Paz A. (1987) Graphoids: a graph-based logic for reasoning about relevance relations. In: Hogg D., Steels L.(Eds) (eds) Advances in artificial intelligence.. North-Holland, Amsterdam, pp 357–363

    Google Scholar 

  • Reichenbach H. (1956) The direction of time. University of California Press, Berkeley

    Google Scholar 

  • Sagiv Y., Walecka S.F. (1982) Subset dependencies and completeness result for a subclass of embedded multivalued dependencies. Journal of the Association for Computing Machinery, 29: 103–117

    MATH  MathSciNet  Google Scholar 

  • Salii V.N. (1988) Lattices with unique complements. Translations of mathematical monographs. American Mathematical Society, Providence

    Google Scholar 

  • Schoken S.S., Hummel R.A. (1993) On the use of the dempster shafer model in information indexing and retrieval applications. International Journal of Man–Machine Studies, 39: 1–37

    Article  Google Scholar 

  • Shafer G. (1976) A Mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Shenoy P.P. (1994) Conditional independence in valuation-based systems. International Journal of Approximate Reasoning, 10: 203–234

    Article  MATH  MathSciNet  Google Scholar 

  • Spohn W. (1980) Stochastic independence, causal independence, and shieldability. Journal of Philosophical Logic 9: 73–99

    Article  MATH  MathSciNet  Google Scholar 

  • Spohn W. (1988) Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper W.L., Skyrms B.(Eds) (eds) Causation in decision, belief change, and statistics (Vol. 2). Kluwer, Dordrecht, pp 105–134

    Google Scholar 

  • Spohn, W. (1994). On the properties of conditional independence. In P. Humphreys (Ed.), Patrick Suppes: scientific philosopher. Probability and probabilistic causality (Vol. 1, pp. 173–194). Dordrecht: Kluwer.

  • Stanley, B. N., Sankappanavar, H. P. (1981). A course in universal algebra. New York: Springer. http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.

  • Studený, M. (1993). Formal properties of conditional independence in different calculi of AI. In Symbolic and quantitative approaches to reasoning and uncertainty. Lecture notes in computer science (Vol. 747, pp. 341–348). Berlin: Springer.

  • Studený M. (2005) Probabilistic conditional independence structures (Vol 97). Springer, London

    Google Scholar 

  • Teixeirade Silva W., Milidiu R.L. (1993) Belief function model for information retrieval. Journal of the American Society for Information Science, 44: 10–18

    Article  Google Scholar 

  • Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1: 3–28

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Wang.

Additional information

This article was submitted to “Special Section on Algebraic Methods in Computational Statistics”.

About this article

Cite this article

Wang, J. A universal algebraic approach for conditional independence. Ann Inst Stat Math 62, 747–773 (2010). https://doi.org/10.1007/s10463-010-0278-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-010-0278-5

Keywords

Navigation