Skip to main content
Log in

Estimating functions for repeated measures with incidental parameters

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Repeated measures, or longitudinal data, are considered. The statistical characteristics for each individual case are supposed to be governed by a structural parameter, common to all, and an incidental parameter, specific to the individual. Introducing this terminology, Neyman and Scott studied the properties of estimators in a likelihood framework. In this paper the model specification is taken to be more limited, not sufficient to construct a proper likelihood function. The proposal here is to seek an estimating function, based on the data and the structural parameter alone, whose maximum has an identifiable limit as the sample size grows. Then a transformation of the maximum is sought so that the modified version is a consistent estimator. Some examples are worked through and asymptotic distributions of the resulting consistent estimators are outlined to enable tests and confidence regions to be derived. Relative efficiency of competing estimators is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen E.B. (1967) On partial sufficiency and partial ancillarity. Skandinavian Aktuarial Journal 50: 137–152

    Google Scholar 

  • Andersen E.B. (1973) Conditional inference and models for measurement. Mentalhygienisk Forlag, Copenhagen

    Google Scholar 

  • Barndorff-Nielsen O.E. (1983) On a formula for the distribution of the maximum likelihood estimator. Biometrika 70: 343–365

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen O.E., Cox D.R. (1994) Inference and asymptotics. Chapman and Hall, London

    MATH  Google Scholar 

  • Berger J.O., Liseo B., Wolpert R.L. (1999) Integrated likelihood methods for eliminating nuisance parameters. Statistical Science 14: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  • Boos D.D. (1980) A new method for constructing approximate confidence intervals from M estimates. Journal of the American Statistical Association 75: 142–145

    Article  MATH  MathSciNet  Google Scholar 

  • Breslow N. (1981) Odds ratio estimators when the data are sparse. Biometrika 68: 73–84

    Article  MATH  MathSciNet  Google Scholar 

  • Cox D.R. (1993) Unbiased estimating equations derived from statistics that are functions of a parameter. Biometrika 80: 905–909

    Article  MATH  Google Scholar 

  • Cox D.R., Reid N. (1987) Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society B 49: 1–39

    MATH  MathSciNet  Google Scholar 

  • Crowder M.J. (1986) On consistency and inconsistency of estimating equations. Econometric Theory 3: 305–330

    Article  Google Scholar 

  • Crowder M.J., Hand D.J. (1990) Analysis of repeated measures. Chapman and Hall, London

    MATH  Google Scholar 

  • Doob J.L. (1953) Stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Firth D. (1993) Bias reduction of maximum likelihood estimates. Biometrika 80: 27–38

    Article  MATH  MathSciNet  Google Scholar 

  • Gesch C.B., Hammond S.M., Hampson S.E., Eves A., Crowder M.J. (2002) Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. British Journal of Psychiatry 181: 22–28

    Article  Google Scholar 

  • Hand D.J., Crowder M.J. (1996) Practical longitudinal data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Kalbfleisch J.D., Sprott D.A. (1970) Application of likelihood methods to models involving large numbers of parameters (with discussion). Journal of the Royal Statistical Society B 32: 175–208

    MATH  MathSciNet  Google Scholar 

  • Kiefer J., Wolfowitz J. (1956) Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics 27: 887–906

    Article  MATH  MathSciNet  Google Scholar 

  • Lancaster T. (2000) The incidental parameter problem since 1948. Journal of Econometrics 95: 391–413

    Article  MATH  MathSciNet  Google Scholar 

  • Liang K.-Y., Zeger S.L. (1995) Inference based on estimating functions in the presence of nuisance parameters (with discussion). Statistical Science 10: 158–199

    Article  MATH  MathSciNet  Google Scholar 

  • Loeve M. (1963) Probability theory. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  • Morton R. (1981) Efficiency of estimating equations and the use of pivots. Biometrika 68: 227–233

    Article  MATH  MathSciNet  Google Scholar 

  • Neyman J., Scott E.L. (1948) Consistent estimates based on partially consistent observations. Econometrica 16: 1–32

    Article  MathSciNet  Google Scholar 

  • Portnoy S. (1988) Asymptotic behaviour of likelihood methods for exponential families when the number of parameters tends to infinity. Annals of Statistics 16: 356–366

    Article  MATH  MathSciNet  Google Scholar 

  • Reid N. (1995) The roles of conditioning in inference (with discussion). Statistical Science 10: 138–199

    Article  MATH  MathSciNet  Google Scholar 

  • Wald A. (1949) Note on the consistency of the maximum likelihood estimate. Annals of Mathematical Statistics 20: 595–601

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Crowder.

About this article

Cite this article

Crowder, M. Estimating functions for repeated measures with incidental parameters. Ann Inst Stat Math 63, 535–558 (2011). https://doi.org/10.1007/s10463-009-0243-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-009-0243-3

Keywords

Navigation