Skip to main content
Log in

Explicit estimators under m-dependence for a multivariate normal distribution

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The problem of estimating parameters of a multivariate normal p-dimensional random vector is considered for a banded covariance structure reflecting m-dependence. A simple non-iterative estimation procedure is suggested which gives an explicit, unbiased and consistent estimator of the mean and an explicit and consistent estimator of the covariance matrix for arbitrary p and m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson S., Brøns H., Jensen S. (1983). Distribution of eigenvalues in multivariate statistical analysis. The Annals of Statistics 11(2): 392–415

    Article  MATH  MathSciNet  Google Scholar 

  • Browne M.W. (1977). The analysis of patterned correlation matrices by generalized least squares. British Journal of Mathematical and Statistical Psychology 30: 113–124

    MATH  MathSciNet  Google Scholar 

  • Chakraborty M. (1998). An efficient algorithm for solving general periodic Toeplitz system. IEEE Transactions on Signal Processing 46(3): 784–787

    Article  MathSciNet  Google Scholar 

  • Chinchilli V.M., Carter W. (1984). A likelihood ratio test for a patterned covariance matrix in a multivariate growth-curve model. Biometrics 40(1): 151–156

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen, L. P. B. (2007). An EM-algorithm for band-toeplitz covariance matrix estimation. Submitted to IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

  • Cramér H. (1946). Mathematical methods of statistics. Princeton University Press, Princeton, pp 254–255

    MATH  Google Scholar 

  • Godolphin E.J., De Gooijer J.G. (1982). On the maximum likelihood estimation of the parameters of a Gaussian moving average process. Biometrika 69: 443–451

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman N. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). The Annals of Mathematical Statistics 34(1): 152–177

    Article  MATH  Google Scholar 

  • Jöreskog, K. G. (1981). Analysis of covariance structures. With discussion by Andersen, E. B., Kiiveri, H., Laake, P., Cox, D. B., Schweder, T. With a reply by the author. Scandinavian Journal of Statistics, 8(2), 65–92.

  • Kollo T., von Rosen D. (2005). Advanced multivariate statistics with matrices. Springer, Dordrecht

    MATH  Google Scholar 

  • Lauritzen S.L. (1996). Graphical models. The Clarendon Press, Oxford University Press, New York

    Google Scholar 

  • Lu N., Zimmerman D. (2005). The likelihood ratio test for a separable covariance matrix. Statistics and Probability Letters 73(4): 449–457

    Article  MATH  MathSciNet  Google Scholar 

  • Marin J., Dhorne T. (2002). Linear Toeplitz covariance structure models with optimal estimators of variance components. Linear Algebra and Its Applications 354: 195–212

    Article  MATH  MathSciNet  Google Scholar 

  • Moura J.M.F., Balram N. (1992). Recursive structure of noncausal Gauss Markov random fields. IEEE Transactions on Information Theory 38(2): 334–354

    Article  Google Scholar 

  • Muirhead R. (1982). Aspects of multivariate statistical theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Nahtman T. (2006). Marginal permutation invariant covariance matrices with applications to linear models. Linear Algebra and Its Applications 417(1): 183–210

    Article  MATH  MathSciNet  Google Scholar 

  • Naik D., Rao S. (2001). Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix. Journal of Applied Statistics 28(1): 91–105

    Article  MATH  MathSciNet  Google Scholar 

  • Olkin, I. (1973). Testing and estimation for structures which are circularly symmetric in blocks. In D. G. Kabe, R. P. Gupta (Eds.), Multivariate statistical inference (pp. 183–195). Amsterdam: North-Holland.

  • Olkin I., Press S. (1969). Testing and estimation for a circular stationary model. The Annals of Mathematical Statistics 40: 1358–1373

    Article  MATH  MathSciNet  Google Scholar 

  • Roy A., Khattree R. (2005). On implementation of a test for Kronecker product covariance structure for multivariate repeated measures data. Statistical Methodology 2(4): 297–306

    Article  MathSciNet  Google Scholar 

  • Searle S.R., Casella G., McCulloch C.E. (1992). Variance components. Wiley, Hoboken, New York

    Book  MATH  Google Scholar 

  • Srivastava M.S. (2002). Methods of multivariate statistics. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Szatrowski T.H. (1985). Asymptopic distributions in the testing and estimation of the missing-data multivariate normal linear patterned mean and correlation matrix. Linear Algebra and its Applications 67: 215–231

    Article  MATH  MathSciNet  Google Scholar 

  • Votaw D.F. (1948). Testing compound symmetry in a normal multivariate distribution. The Annals of Mathematical Statistics 19: 447–473

    Article  MATH  MathSciNet  Google Scholar 

  • Wilks S.S. (1946). Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. The Annals of Mathematical Statistics 17: 257–281

    Article  MATH  MathSciNet  Google Scholar 

  • Woods J.W. (1972). Two-dimensional discrete Markovian fields. IEEE Transactions on Information Theory, IT 18(2): 232–240

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ohlson.

About this article

Cite this article

Ohlson, M., Andrushchenko, Z. & von Rosen, D. Explicit estimators under m-dependence for a multivariate normal distribution. Ann Inst Stat Math 63, 29–42 (2011). https://doi.org/10.1007/s10463-008-0213-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0213-1

Keywords

Navigation