Skip to main content
Log in

A preferential attachment model with Poisson growth for scale-free networks

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We propose a scale-free network model with a tunable power-law exponent. The Poisson growth model, as we call it, is an offshoot of the celebrated model of Barabási and Albert where a network is generated iteratively from a small seed network; at each step a node is added together with a number of incident edges preferentially attached to nodes already in the network. A key feature of our model is that the number of edges added at each step is a random variable with Poisson distribution, and, unlike the Barabási–Albert model where this quantity is fixed, it can generate any network. Our model is motivated by an application in Bayesian inference implemented as Markov chain Monte Carlo to estimate a network; for this purpose, we also give a formula for the probability of a network under our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R., Jeong H. and Barabási A.-L. (1999). Diameter of the world-wide web. Nature 401: 130–131

    Article  Google Scholar 

  • Albert R. and Barabási A.-L. (2000). Topology of evolving networks: local events and universality. Physical Review Letters 85: 5234–5237

    Article  Google Scholar 

  • Barabási A.-L. and Albert R. (1999). Emergence of scaling in random networks. Science 286: 509–512

    Article  MathSciNet  Google Scholar 

  • Bauke H. (2007). Parameter estimation for power-law distributions by maximum likelihood methods. The European Physical Journal B Condensed Matter and Complex Systems 58(2): 167–173

    Article  Google Scholar 

  • Bianconi G. and Barabási A.-L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters 54(4): 436–442

    Article  Google Scholar 

  • Boccaletti S., Latora V., Moreno Y., Chavez M. and Hwang D.-U. (2006). Complex networks: structure and dynamics. Physics Reports 4-5 424: 175–308

    Article  MathSciNet  Google Scholar 

  • Bollobás B., Riordan O., Spencer J. and Tusanády G. (2001). The degree sequence of a scale-free random graph process. Random Structures Algorithms 18: 279–290

    Article  MATH  MathSciNet  Google Scholar 

  • Dorogovtsev S.N., Mendes J.F.F., Samukhin and A.N. (2000). Structure of growing networks with preferential linking. Physical Review Letters 85: 4633–4636

    Article  Google Scholar 

  • Dorogovtsev S.N. and Mendes J.F.F. (2001). Effect of accelerated growth of communications networks on their structure. Physical Review E 63: 025101

    Article  Google Scholar 

  • Erdös P. and Rényi A. (1959). On random graphs I. Publicationes Mathematicae, 6: 290–297

    MATH  Google Scholar 

  • Goldstein M.L., Morris S.A. and Yen G.G. (2004). Problems with fitting to the power-law distribution. The European Physics Journal B 41: 255–258

    Article  Google Scholar 

  • Jeong H., Mason S., Barabási A.-L. and Oltvai Z.N. (2001). Lethality and centrality in protein networks. Nature 411: 41–42

    Article  Google Scholar 

  • Krapivsky P.L., Redner S. and Leyvraz F. (2000). Connectivity of growing random networks. Physical Review Letters 85: 4629–4632

    Article  Google Scholar 

  • Krapivsky P.L. and Redner S. (2001). Organization of growing random networks. Physical Review E 63: 066123

    Article  Google Scholar 

  • Lee D.S., Goh K.I., Kahng B. and Kim D. (2005). Scale-free random graphs and Potts model. Pramana Journal of Physics 64: 1149–1159

    Article  Google Scholar 

  • Newman M.E.J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46(5): 323–351

    Article  Google Scholar 

  • Redner S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physics Journal B 4: 131–134

    Article  Google Scholar 

  • Sheridan, P., Kamimura, T., Shimodaira, H. (2007). Scale-free networks in Bayesian inference with applications to bioinformatics. Proceedings of The International Workshop on Data-Mining and Statistical Science (DMSS2007), 1–16, Tokyo.

  • Solé R.V., Pastor-Satorras R., Smith E. and Kepler T.B. (2002). A model of large-scale proteome evolution. Advances in Complex Systems 5: 43–54

    Article  MATH  Google Scholar 

  • Strogatz S.H. (2001). Exploring complex networks. Nature 410: 268–276

    Article  Google Scholar 

  • Watts D.J. and Strogatz S.H. (1998). Collective dynamics of small-world networks. Nature 393: 440–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Sheridan.

About this article

Cite this article

Sheridan, P., Yagahara, Y. & Shimodaira, H. A preferential attachment model with Poisson growth for scale-free networks. Ann Inst Stat Math 60, 747–761 (2008). https://doi.org/10.1007/s10463-008-0181-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0181-5

Keywords

Navigation