Skip to main content
Log in

Jump-preserving surface reconstruction from noisy data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A new local smoothing procedure is suggested for jump-preserving surface reconstruction from noisy data. In a neighborhood of a given point in the design space, a plane is fitted by local linear kernel smoothing, giving the conventional local linear kernel estimator of the surface at the point. The neighborhood is then divided into two parts by a line passing through the given point and perpendicular to the gradient direction of the fitted plane. In the two parts, two half planes are fitted, respectively, by local linear kernel smoothing, providing two one-sided estimators of the surface at the given point. Our surface reconstruction procedure then proceeds in the following two steps. First, the fitted surface is defined by one of the three estimators, i.e., the conventional estimator and the two one-sided estimators, depending on the weighted residual means of squares of the fitted planes. The fitted surface of this step preserves the jumps well, but it is a bit noisy, compared to the conventional local linear kernel estimator. Second, the estimated surface values at the original design points obtained in the first step are used as new data, and the above procedure is applied to this data in the same way except that one of the three estimators is selected based on their estimated variances. Theoretical justification and numerical examples show that the fitted surface of the second step preserves jumps well and also removes noise efficiently. Besides two window widths, this procedure does not introduce other parameters. Its surface estimator has an explicit formula. All these features make it convenient to use and simple to compute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besag J. (1986). On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society, B, 48:259–302

    MATH  MathSciNet  Google Scholar 

  • Besag J., Green P., Higdon D., Mengersen K. (1995). Bayesian computation and stochastic systems (with discussion). Statistical Science 10:3–66

    Article  MATH  MathSciNet  Google Scholar 

  • Carlstein E., Krishnamoorthy C.(1992). Boundary estimation. Journal of the American Statistical Association 87:430–438

    Article  MATH  MathSciNet  Google Scholar 

  • Chu C.K., Glad I.K., Godtliebsen F., Marron J.S. (1998). Edge-preserving smoothers for image processing (with discussion). Journal of the American Statistical Association 93:526–556

    Article  MATH  MathSciNet  Google Scholar 

  • Cleveland W.S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:828–836

    Article  MathSciNet  Google Scholar 

  • Fan J., Gijbels I. (1996). Local polynomial modelling and its applications. London, Chapman & Hall

    MATH  Google Scholar 

  • Fessler J.A., Erdogan H., Wu W.B. (2000). Exact distribution of edge-preserving MAP estimators for linear signal models with Gaussian measurement noise. IEEE Transactions on Image Processing 9:1049–1055

    Article  MATH  Google Scholar 

  • Geman S., Geman D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–741

    Article  MATH  Google Scholar 

  • Gijbels I., Lambert A., Qiu P. (2006). Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:1075–1087

    Article  Google Scholar 

  • Gijbels I., Lambert A., Qiu P. (2007). Jump-preserving regression and smoothing using local linear fitting: a compromise. Annals of the Institute of Statistical Mathematics 59:235–272

    Article  MATH  MathSciNet  Google Scholar 

  • Godtliebsen F., Sebastiani G. (1994). Statistical methods for noisy images with discontinuities. Journal of Applied Statistics 21:459–476

    Article  Google Scholar 

  • Gonzalez R.C., Woods R.E. (1992). Digital image processing. Reading, Addison-Wesley

    Google Scholar 

  • Hall P., Molchanov (2003). Sequential methods for design-adaptive estimation of discontinuities in regression curves and surfaces. The Annals of Statistics 31:921–941

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P., Peng L., Rau C. (2001). Local likelihood tracking of fault lines and boundaries. Journal of the Royal Statistical Society, B 63:569–582

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P., Rau C. (2000). Tracking a smooth fault line in a response surface. The Annals of Statistics 28:713–733

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle W. (1990). Applied nonparametric regression. Oxford, Oxford University Press

    MATH  Google Scholar 

  • Keeling S.L., Stollberger R. (2002). Nonlinear anisotropic diffusion filtering for multiscale edge enhancement. Inverse Problems 18:175–190

    Article  MATH  MathSciNet  Google Scholar 

  • Li S.Z. (1995). Markov random field modeling in computer vision. New York, Springer

    Google Scholar 

  • Marroquin J.L., Velasco F.A., Rivera M., Nakamura M. (2001). Gauss–Markov measure field models for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 23:337–347

    Article  Google Scholar 

  • Müller H.G., Song K.S. (1994). Maximin estimation of multidimensional boundaries. Journal of the Multivariate Analysis 50:265–281

    Article  MATH  Google Scholar 

  • Nason G., Silverman B. (1994). The discrete wavelet transform in S. Journal of Computational and Graphical Statistics 3:163–191

    Article  Google Scholar 

  • O’Sullivan F., Qian M. (1994). A regularized contrast statistic for object boundary estimation—implementation and statistical evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16:561–570

    Article  Google Scholar 

  • Perona P., Malik J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12:629–639

    Article  Google Scholar 

  • Polzehl J., Spokoiny V.G. (2000). Adaptive weights smoothing with applications to image restoration. Journal of the Royal Statistical Society, B 62:335–354

    Article  MathSciNet  Google Scholar 

  • Qiu P. (1997). Nonparametric estimation of jump surface. Sankhyā (A) 59:268–294

    MATH  Google Scholar 

  • Qiu P. (1998). Discontinuous regression surfaces fitting. The Annals of Statistics 26:2218–2245

    Article  MATH  MathSciNet  Google Scholar 

  • Qiu P. (2002). A nonparametric procedure to detect jumps in regression surfaces. Journal of Computational and Graphical Statistics 11:799–822

    Article  MathSciNet  Google Scholar 

  • Qiu P. (2003). A jump-preserving curve fitting procedure based on local piecewise-linear kernel estimation. Journal of Nonparametric Statistics 15:437–453

    Article  MATH  MathSciNet  Google Scholar 

  • Qiu P. (2004). The local piecewisely linear kernel smoothing procedure for fitting jump regression surfaces. Technometrics 46:87–98

    Article  MathSciNet  Google Scholar 

  • Qiu P. (2005). Image processing and jump regression analysis. New York, Wiley

    Book  MATH  Google Scholar 

  • Qiu P. (2007). Jump surface estimation, edge detection, and image restoration. Journal of the American Statistical Association 102:745–756

    Article  MATH  MathSciNet  Google Scholar 

  • Qiu P., Yandell B. (1997). Jump detection in regression surfaces. Journal of Computational and Graphical Statistics 6:332–354

    Article  MathSciNet  Google Scholar 

  • Sebastiani G., Godtliebsen F. (1997). On the use of Gibbs priors for Bayesian image restoration. Signal Processing 56:111–118

    Article  MATH  Google Scholar 

  • Stone C. (1982). Optimal global rates of convergence for nonparametric regression. The Annals of Statistics 10:1040–1053

    Article  MATH  MathSciNet  Google Scholar 

  • Sun J., Qiu P. (2007). Jump detection in regression surfaces using both first-order and second-order derivatives. Journal of Computational and Graphical Statistics 16:289–311

    Article  MathSciNet  Google Scholar 

  • Titterington D.M. (1985). Common structure of smoothing techniques in statistics. International Statistical Review 53:141–170

    Article  MATH  MathSciNet  Google Scholar 

  • Tomasi, C., Manduchi, R. (1998). Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE international conference on computer vision (pp. 839–846). Bombay

  • Tukey J.W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Weikert J., ter Haar Romeny B.M., Viergever M. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7:398–410

    Article  Google Scholar 

  • Yi J.H., Chelberg D.M. (1995). Discontinuity-preserving and viewpoint invariant reconstruction of visible surfaces using a first order regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence 17:624–629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihua Qiu.

About this article

Cite this article

Qiu, P. Jump-preserving surface reconstruction from noisy data. Ann Inst Stat Math 61, 715–751 (2009). https://doi.org/10.1007/s10463-007-0166-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0166-9

Keywords

Navigation