Skip to main content
Log in

Functional regression modeling via regularized Gaussian basis expansions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of constructing functional regression models for scalar responses and functional predictors, using Gaussian basis functions along with the technique of regularization. An advantage of our regularized Gaussian basis expansions to functional data analysis is that it creates a much more flexible instrument for transforming each individual’s observations into functional form. In constructing functional regression models there remains the problem of how to determine the number of basis functions and an appropriate value of a regularization parameter. We present model selection criteria for evaluating models estimated by the method of regularization in the context of functional regression models. The proposed functional regression models are applied to Canadian temperature data. Monte Carlo simulations are conducted to examine the efficiency of our modeling strategies. The simulation results show that the proposed procedure performs well especially in terms of flexibility and stable estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando T., Imoto S., Konishi S. (2001). Estimating nonlinear regression models based on Gaussian basis function networks (in Japanese). Japanese Journal of Applied Statistics 30: 19–35

    Google Scholar 

  • Ando, T., Konishi, S., Imoto, S. (2005). Nonlinear regression modeling via regularized Gaussian basis function networks. Journal of Statistical Planning and Inference (in press).

  • Araki, Y., Konishi, S. (2006). Functional supervised and unsupervised classification of gene expression data. In: Proceedings in computational statistics 2006, pp. 1105–1112. Physica-Verlag/Springer.

  • Craven P., Wahba G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik 31: 377–403

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B. (1979). Bootstrap methods: another look at the Jackknife. The Annals of Statistics 7: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Green P.J., Silverman B.W. (1994). Nonparametric regression and generalized linear models. London, Chapman & Hall

    MATH  Google Scholar 

  • Hastie T., Tibshirani R. (1990). Generalized additive models. London, Chapman & Hall

    MATH  Google Scholar 

  • Hurvich C.M., Simonoff J.S., Tsai C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society B 60: 359–373

    Article  MathSciNet  Google Scholar 

  • James G. (2002). Generalized linear models with functional predictor variables. Journal of the Royal Statistical Society B 64: 411–432

    Article  MATH  Google Scholar 

  • Konishi S., Kitagawa G. (1996). Generalised information criteria in model selection. Biometrika 83: 875–890

    Article  MATH  MathSciNet  Google Scholar 

  • Kullback S., Leibler R.A. (1951). On information and sufficiency. Annals of Mathematical Statistics 22: 79–86

    Article  MATH  MathSciNet  Google Scholar 

  • Linhart H., Zucchini W. (1986). Finite sample selection criteria for multinomial models. Statistische Hefte 27: 173–178

    Article  MathSciNet  Google Scholar 

  • Marx B.D., Eilers P.H.C. (1999). Generalized linear regression for sampled signals or curves: A P-spline approach. Technometrics 41: 1–13

    Article  Google Scholar 

  • Mizuta, M. (2006). Discrete functional data analysis. In: Proceedings in computational statistics 2006, pp. 361–369 Physica-Verlag/Springer.

  • Moody J., Darken C.J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation 1: 281–294

    Article  Google Scholar 

  • Nelder J.A., Wedderburn R.W.M. (1972). Generalized linear models. Journal of the Royal Statistical Society A 135: 370–384

    Article  Google Scholar 

  • Ramsay J.O., Silverman B.W. (2002). Applied functional data analysis. New York, Springer-Verlag

    Book  MATH  Google Scholar 

  • Ramsay J.O., Silverman B.W. (2005). Functional data analysis (2nd ed). New York, Springer-Verlag

    MATH  Google Scholar 

  • Rao, C. R., Wu, Y. (2001). Model selection. In: P. Lahiri (Ed.), Model selection: IMS lecture notes-monograph series, pp. 1–18.

  • Rice J.A., Wu C.O. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57: 253–259

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Araki.

About this article

Cite this article

Araki, Y., Konishi, S., Kawano, S. et al. Functional regression modeling via regularized Gaussian basis expansions. Ann Inst Stat Math 61, 811–833 (2009). https://doi.org/10.1007/s10463-007-0161-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0161-1

Keywords

Navigation