Skip to main content
Log in

Nonparametric density estimation for linear processes with infinite variance

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider nonparametric estimation of marginal density functions of linear processes by using kernel density estimators. We assume that the innovation processes are i.i.d. and have infinite-variance. We present the asymptotic distributions of the kernel density estimators with the order of bandwidths fixed as hcn −1/5, where n is the sample size. The asymptotic distributions depend on both the coefficients of linear processes and the tail behavior of the innovations. In some cases, the kernel estimators have the same asymptotic distributions as for i.i.d. observations. In other cases, the normalized kernel density estimators converge in distribution to stable distributions. A simulation study is also carried out to examine small sample properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryk A., Mielniczuk J. (2005). Asymptotic properties of density estimates for linear processes: application of projection method. Journal of Nonparametric Statistics 17, 121–133

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng B., Robinson P.M. (1991). Density estimation in strongly dependent non-linear time series. Statistica Sinica 1, 335–359

    MATH  MathSciNet  Google Scholar 

  • Chow Y.S., Teicher H. (1988). Probability theory (2nd ed). New York, Springer

    MATH  Google Scholar 

  • Csörgő S., Mielniczuk J. (1995). Density estimation under long-range dependence. The Annals of Statistics 28, 990–999

    Article  Google Scholar 

  • Doukhan P. (1994). Mixing: properties and examples Lecture Notes in Statistics, Vol. 85. New York, Springer

    Google Scholar 

  • Fan J., Yao Q. (2003). Nonlinear time series. New York, Springer

    Book  MATH  Google Scholar 

  • Giraitis L., Koul H.L., Surgailis D. (1996). Asymptotic normality of regression estimators with long memory errors. Statistics & Probability Letters 29, 317–335

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Surgailis D. (1986). Multivariate Appell polynomials and the central limit theorem. In: Eberlein E., Taqqu M.S. (eds). Dependence in probability and statistics. Boston, Birkhäuser, pp. 21–71

    Google Scholar 

  • Hall P., Hart J.D. (1990). Convergence rates in density estimation for data from infinite-order moving average process. Probability Theory and Related Fields 87, 253–274

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin M., Tran L.T. (1996). Kernel density estimation for linear processes: asymptotic normality and optimal bandwidth derivation. The Annals of the Institute of Statistical Mathematics 48, 429–449

    Article  MATH  MathSciNet  Google Scholar 

  • Hidalgo J. (1997). Non-parametric estimation with strongly dependent multivariate time series. Journal of Time Series Analysis, 18, 95–122

    Article  MATH  MathSciNet  Google Scholar 

  • Ho H.-C. (1996). On central and non-central limit theorems in density estimation for sequences of long-range dependence. Stochastic Processes and their Applications 63, 153–174

    Article  MATH  MathSciNet  Google Scholar 

  • Ho H.-C., Hsing T. (1996). On the asymptotic expansion of the empirical process of long-memory moving averages. The Annals of Statistics 24, 992–1024

    Article  MATH  MathSciNet  Google Scholar 

  • Ho H.-C., Hsing T. (1997). Limit theorems for functionals of moving averages. The Annals of Probability 25, 1636–1669

    Article  MATH  MathSciNet  Google Scholar 

  • Honda T. (2000). Nonparametric density estimation for a long-range dependent linear process. The Annals of the Institute of Statistical Mathematics 52, 599–611

    Article  MATH  MathSciNet  Google Scholar 

  • Hsing T. (1999). On the asymptotic distribution of partial sum of functionals of infinite-variance moving averages. The Annals of Probability 27, 1579–1599

    Article  MATH  MathSciNet  Google Scholar 

  • Koul H.L., Surgailis D. (2001). Asymptotics of empirical processes of long memory moving averages with infinite variance. Stochastic Processes and their Applications 91, 309–336

    Article  MATH  MathSciNet  Google Scholar 

  • Koul H.L., Surgailis D. (2002). Asymptotic expansion of the empirical process of long memory moving averages. In: Dehling H., Mikosch T., Sørensen M. (eds). Empirical process techniques for dependent data. Boston, Birkhäuser, pp. 213–239

    Google Scholar 

  • Peng L., Yao Q. (2004). Nonparametric regression under dependent errors with infinite variance. The Annals of the Institute of Statistical Mathematics 56, 73–86

    Article  MATH  MathSciNet  Google Scholar 

  • Pipiras V., Taqqu M.S. (2003). Central limit theorems for partial sums of bounded functionals of infinite-variance moving averages. Bernoulli 9, 833–855

    Article  MATH  MathSciNet  Google Scholar 

  • Samorodnitsky G., Taqqu M.S. (1994). Stable non-Gaussian processes: stochastic models with infinite variance. London, Chapman & Hall

    MATH  Google Scholar 

  • Schick A., Wefelmeyer W. (2006). Pointwise convergence rates for kernel density estimators in linear processes. Statistics & Probability Letters 76, 1756–1760

    Article  MATH  MathSciNet  Google Scholar 

  • Surgailis D. (2002). Stable limits of empirical processes of moving averages with infinite variance. Stochastic Processes and their Applications 100, 255–274

    Article  MATH  MathSciNet  Google Scholar 

  • Surgailis D. (2004). Stable limits of sums of bounded functions of long-memory moving averages with finie variance. Bernoulli 10, 327–355

    Article  MATH  MathSciNet  Google Scholar 

  • Taniguchi M. Kakizawa Y. (2000). Asymptotic theory of statistical inference for time series. New York, Springer

    Google Scholar 

  • Wu W.B., Mielniczuk J. (2002). Kernel density estimation for linear processes. The Annals of Statistics 30, 1441–1459

    Article  MATH  MathSciNet  Google Scholar 

  • Wuertz, D. and many others and see the SOURCE file (2006). fBasics: Rmetrics -Marketes and Basic Statistics, R package version 221.10065. http://www.rmetrics.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Honda.

About this article

Cite this article

Honda, T. Nonparametric density estimation for linear processes with infinite variance. Ann Inst Stat Math 61, 413–439 (2009). https://doi.org/10.1007/s10463-007-0149-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0149-x

Keywords

Navigation