Skip to main content
Log in

On potentially negative space time covariances obtained as sum of products of marginal ones

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Most of the literature on spatio-temporal covariance models proposes structures that are positive in the whole domain. However, problems of physical, biological or medical nature need covariance models allowing for negative values or oscillations from positive to negative values. In this paper, we propose an easy-to-implement and interpretable class of models that admits this type of covariances. We show particular analytical examples that may be of interest in the biometrical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson G.D., Qiu S.-L. (1997). A monotonicity property of the gamma function. Proceedings of the American Mathematical Society 125: 3355–3362

    Article  MATH  MathSciNet  Google Scholar 

  • Berg C., Forst G. (1975). Potential theory on locally compact abelian groups. New York, Springer

    MATH  Google Scholar 

  • Berg C., Pedersen H.L. (2001). A completely monotone function related to the Gamma function. Journal of Computational and Applied Mathematics 133, 219–230

    Article  MATH  MathSciNet  Google Scholar 

  • Berg C. (2004). Integral representation of some functions related to the Gamma function. Mediterranean Journal of Mathematics 1, 433–439

    Article  MATH  MathSciNet  Google Scholar 

  • Bochner S. (1933). Monotone funktionen, Stieltjes integrale und harmonische analyse. Mathematische Annalen 108, 378–410

    Article  MathSciNet  Google Scholar 

  • Chilès J.P., Delfiner P. (1999). Geostatistics: modelling spatial uncertainty. New York, Wiley

    Google Scholar 

  • Christakos G. (2000). Modern spatiotemporal geostatistics. Oxford, Oxford University Press

    Google Scholar 

  • Cressie N.A.C., Huang C. (1999). Classes of nonseparable, spatiotemporal stationary covariance functions. Journal of the American Statistical Association 94, 1330–1340

    Article  MATH  MathSciNet  Google Scholar 

  • De Cesare L., Myers D.E., Posa D. (2000). Product–sum covariance for space-time modeling: an environmental application. Environmetrics 12, 11–23

    Article  Google Scholar 

  • De Cesare L., Myers D.E., Posa D. (2001). Estimating and modeling space-time correlation structures. Statistics and Probability Letters 51, 9–14

    Article  MATH  MathSciNet  Google Scholar 

  • De Iaco S., Myers D.E., Posa D. (2001). Space-time analysis using a general product-sum model. Statistics and Probability Letters 52, 21–28

    Article  MATH  MathSciNet  Google Scholar 

  • Dimitrakopoulos R., Luo X. (1994). Spatiotemporal modeling: covariances and ordinary Kriging system. In: Dimitrakopoulos R. (eds), Geostatistics for the next century (pp. 88–93). Kluwer Academic Publisher.

  • Gneiting T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association 97, 590–600

    Article  MATH  MathSciNet  Google Scholar 

  • Janauer G.A. (2001). Is what has been measured of any direct relevance to the success of the macrophyte in its particular environment? In O. Ravera (Ed.), Scientific and legal aspects of biological monitoring in freshwater. Journal of Limnology, 60(Suppl. 1), 33–38

  • Ibáñez-Gual M.V., Simó A. (2004). Conditional and unconditional simulation of healthy patients’ visual fields. Biometrical Journal 46, 404–419

    Article  Google Scholar 

  • Levinson S.J., Beall J.M., Powers E.J., Bengtson R.D. (1984). Space-time statistics of the turbulence in a Tokamak edge plasma. Nuclear Fusion 24, 527–540

    Google Scholar 

  • Ma C. (2002). Spatio-temporal covariance functions generated by mixtures. Mathematical Geology 34, 965–974

    Article  MATH  MathSciNet  Google Scholar 

  • Ma C. (2005a). Linear combinations of space-time covariance functions and variograms. IEEE Transactions on Signal Processing 53, 857–864

    Article  MathSciNet  Google Scholar 

  • Ma C. (2005b). Spatio-temporal variograms and covariance models. Advances in Applied Probability 37, 706–725

    Article  MATH  MathSciNet  Google Scholar 

  • Matérn B. (1986). Spatial variation, 2nd edn. Berlin, Springer

    MATH  Google Scholar 

  • Mitchell M., Genton M.G., Gumpertz M. (2005). Testing for separability of space-time covariances. Environmetrics 16, 819–831

    Article  MathSciNet  Google Scholar 

  • Myers D., Journel A. (1990). Variograms with zonal anisotropies and non-invertible kriging systems. Mathematical Geology 22, 779–785

    Article  MATH  MathSciNet  Google Scholar 

  • Pomeroy J.W., Toth B., Granger R.J., Hedstrom N.R., Essery R.L. H. (2003). Variation in surface energetics during snowmelt in a subarctic mountain catchment. Journal of Hydrometeorology 4, 702–719

    Article  Google Scholar 

  • Porcu E., Saura F., Mateu J. (2007). New classes of covariance and spectral density functions for spatio-temporal modelling. Stochastic Environmental Research and Risk Assessment (in press).

  • Rohuani S., Hall T.J. (1989). Space–time Kriging of groundwater data. In: Armstrong M. (eds), Geostatistics Vol. 2. New York, Kluwer Academic Publishers, pp. 639–651

    Google Scholar 

  • Sasvári Z. (1994). Positive definite and definitizable functions. Berlin, Akademie Verlag

    MATH  Google Scholar 

  • Schoenberg I.J. (1938). Metric spaces and completely monotone functions. Annals of Mathematics 39, 811–841

    Article  MathSciNet  Google Scholar 

  • Shkarofsky I.P. (1968). Generalized turbulence space-correlation and wave-number spectrum-function pairs. Canadian Journal of Physics 46, 2133–2140

    Google Scholar 

  • Vecchia A.V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society B 20, 370–373

    Google Scholar 

  • Xu Z.-W., Wu J., Huo W.-P., Wu Z.-S. (2003a). Temporal skewness of electromagnetic pulsed waves propagating through random media with embedded irregularity slab. Chinese Physics Letters 20, 370–373

    Article  Google Scholar 

  • Xu Z.-W., Wu J., Wu Z.-S. (2003b). Statistical temporal behaviour of pulse wave propagation through continuous random media. Waves Random Media 13, 59–73

    Article  MATH  Google Scholar 

  • Yaglom A.M. (1987). Correlation theory of stationary and related random functions. New York, Springer

    Google Scholar 

  • Yakhot V., Orszag S.A., She Z.-S. (1989). Space-time correlations in turbulence - Kinematical versus dynamical effects. Physics of Fluids 1, 184–186

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mateu.

Additional information

Work partially funded by grants GV04A724 (Generalitat Valenciana) and MTM2004-06231 (Spanish Ministry of Science and Education).

About this article

Cite this article

Gregori, P., Porcu, E., Mateu, J. et al. On potentially negative space time covariances obtained as sum of products of marginal ones. Ann Inst Stat Math 60, 865–882 (2008). https://doi.org/10.1007/s10463-007-0122-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0122-8

Keywords

Navigation