Skip to main content
Log in

Comparison of methods for ordinal lens opacity data from atomic-bomb survivors: univariate worse-eye method and bivariate GEE method using global odds ratio

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In analyses of bivariate ordered polytomous cataract data from atomic-bomb survivors, we compared two methods, the univariate worse-eye method, and the bivariate generalized estimating equations (GEE’s) method using global odds ratio by Williamson et al. (Journal of the American Statistical Association, 90, 1432–1437, 1995). When the association was large and only subject level covariates were used, model selection in the univariate and bivariate methods resulted in the same mean model and similar risk estimates. We showed that the mean parameter and the standard error (SE) in the univariate model are emphasized relative to those in the bivariate model, the biases of which are negligible when the association between both eyes is large. Large sample simulation studies indicated that the univariate Wald statistics are slightly conservative. The simulations also showed that, in bivariate cases, irrespective of the degree of association, the independence estimating equations method with robust SE, and the GEE method with model-based and robust SE are almost fully efficient in parameter estimation when only subject level covariates are included in the mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. (1973). Information theory and an extension of maximum likelihood principle. In: Petrov B.N., Czaki F. (eds) 2nd International Symposium on Information Theory. Budapest, Akademiai Kiado, pp. 267–281

    Google Scholar 

  • Choshi K., Takaku H., Mishima T., Takase S., Neriishi S., Finch C., Otake M. (1983). Ophthalmologic change related to radiation exposure and age in Adult Health Study sample, Hiroshima and Nagasaki. Radiation Research, 96, 560–579

    Article  Google Scholar 

  • Chylack L.T., Leske C., MacCarthy D., Khu P., Kashiwagi T., Sperduto R. (1989). Lens opacity classification system II (LOCS II). Archives of Ophthalmology 107, 991–997

    Google Scholar 

  • Chylack L.T., Wolfe J.K., Singer D.M., Leske M.C., Bullimore M.A., Bailey I.L., Friend J., MaCarthy D., Wu S.Y. (1993). The lens opacities classification system III, The longitudinal study of cataract study group. Archives of Ophthalmology 111, 831–836

    Google Scholar 

  • Dale J.R. (1984). Local versus global association for bivariate ordered responses. Biometrika 71, 507–514

    Article  MathSciNet  Google Scholar 

  • Dale J.R. (1986). Global cross-ratio models for bivariate, discrete ordered responses. Biometrics 42, 909–917

    Article  Google Scholar 

  • Diggle P.J., Heagerty P., Liang K.-Y., Zeger S.L. (2002). Analysis of longitudinal data (2 Ed.) Oxford University Press, Oxford

    Google Scholar 

  • Ekholm A., Jokinen J., McDonald J.W., Smith P.W.F. (2003). Joint regression and association modeling of longitudinal ordinal data. Biometrics 59, 795–803

    Article  MATH  MathSciNet  Google Scholar 

  • Ekholm A., Smith P.W.F., McDonald J.W. (1995). Marginal regression analysis of a multivariate binary response. Biometrika 82, 847–854

    Article  MATH  MathSciNet  Google Scholar 

  • Gange S.J., Linton K.L.P., Scott A.J., DeMets D.L., Klein R. (1995). A comparison of methods for correlated ordinal measures with ophthalmic applications. Statistics in Medicine 14, 1961–1974

    Article  Google Scholar 

  • Gunsolley J.C., Getchell C., Chinchilli V.M. (1995). Small sample characteristic of generalized estimating equations. Communication in Statistics Simulation and Computation 24, 869–878

    Article  MATH  Google Scholar 

  • Kim K. (1995). A bivariate cumulative probit regression model for ordered categorical data. Statistics in Medicine 14, 1341–1352

    Article  Google Scholar 

  • Lee Y., Nelder J.A. (2004). Conditional and marginal models: another view. Statistical Science 19, 219–238

    Article  MATH  MathSciNet  Google Scholar 

  • Liang K.-Y., Zeger S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22

    Article  MATH  MathSciNet  Google Scholar 

  • Liang K.-Y., Zeger S.L., Qaquish B. (1992). Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society Series B 54, 3–40

    MATH  Google Scholar 

  • Lipsitz S.R., Laird N.M., Harrington D.P. (1991). Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association. Biometrika 78, 153–160

    Article  MathSciNet  Google Scholar 

  • Lumley T. (1996). Generalized estimating equation for ordinal data: A note on working correlation structure. Biometrics 52, 354–361

    Article  MATH  Google Scholar 

  • McCullagh P., Nelder J.A. (1989). Generalized linear models. London, Chapman and Hall

    MATH  Google Scholar 

  • Miller M.E., Davis C.S., Landis J.R. (1993). The analysis of longitudinal ordered polytomous data: Generalized estimating equations and connection with weighted least squares. Biometrics 49, 1033–1044

    Article  MATH  Google Scholar 

  • Minamoto A., Taniguchi H., Yoshitani N., Mukai S., Yokoyamoa T., Kumagami T., Tsuda Y., Mishima H., Amemiya T., Neriishi K., Nakashima E., Hida A., Fujiwara S., Suzuki G., Akahoshi M. (2004). Cataract study in atomic-bomb survivors. International Journal of Radiation Biology 80, 339–345

    Article  Google Scholar 

  • Molenberghs G., Lesaffre E. (1994). Marginal modeling of correlated ordinal data using a multivariate Plackett distribution. Journal of the American Statistical Association 89, 633–644

    Article  MATH  Google Scholar 

  • Nakashima E., Neriishi K., Minamoto A. (2006). A reanalysis of atomic-bomb cataract data, 2000–2002: A threshold analysis. Health Physics 90, 154–160

    Article  Google Scholar 

  • O’Hara Hines R.J. (1997). Analysis of clustered polytomous data using generalized estimating equations and working correlation structures. Biometrics 53, 1552–1556

    Article  MATH  Google Scholar 

  • Pan W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120–125

    Article  MathSciNet  Google Scholar 

  • Plackett R.L. (1965). A class of bivariate distribution. Journal of the American Statistical Association 60, 516–522

    Article  MathSciNet  Google Scholar 

  • Sharples K., Breslow N. (1992). Regression analysis of correlated binary data: some small sample results for the estimating equation approach. Journal of Statistical Computation and Simulation 42, 1–20

    Article  MATH  Google Scholar 

  • Williamson J.M., Kim K.-M., Lipsitz S.R. (1995). Analyzing bivariate ordinal data using a global odds ratio. Journal of the American Statistical Association 90, 1432–1437

    Article  MATH  MathSciNet  Google Scholar 

  • Yokoro K. (eds.) (1991). A review of forty-five years of study of Hiroshima and Nagasaki atomic-bomb survivors. Summary and conclusion. Journal of Radiation Research (Tokyo), 32 (suppl.).

  • Young R., Bennett B. (eds.) (2006). DS02: A revised system for atomic bomb survivors dose estimation, Radiation Effects Research Foundation, Hiroshima.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Nakashima.

About this article

Cite this article

Nakashima, E., Neriishi, K. & Minamoto, A. Comparison of methods for ordinal lens opacity data from atomic-bomb survivors: univariate worse-eye method and bivariate GEE method using global odds ratio. Ann Inst Stat Math 60, 465–482 (2008). https://doi.org/10.1007/s10463-007-0113-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0113-9

Keywords

Navigation