Skip to main content
Log in

Higher order estimation at Lebesgue points

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The symmetric derivative of a probability measure at a Lebesgue point can often be specified by an exact relation involving a regularity index. Knowledge of this index is of practical interest, for example to specify the local behavior of the measure under study and to evaluate bandwidths or number of neighbors to take into account in smoothing techniques. This index also determines local rates of convergence of estimators of particular points of curves and surfaces, like minima and maxima. In this paper, we consider the estimation of the d-dimensional regularity index. We introduce an estimator and derive the basic asymptotic results. Our estimator is inspired by an estimator proposed in Drees and Kaufmann (1998, Stochastic Processes and their Applications, 75, 149–172) in the context of extreme value statistics. Then, we show how (estimates of) the regularity index can be used to solve practical problems in nearest neighbor density estimation, such as removing bias or selecting the number of neighbors. Results of simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham C., Biau G., Cadre B. (2003). Simple estimation of the mode of a multivariate density. The Canadian Journal of Statistics 31, 23–34

    Article  MATH  MathSciNet  Google Scholar 

  • Abraham C., Biau G., Cadre B. (2004). On the asymptotic properties of a simple estimate of the mode. ESAIM: Probability and Statistics 8: 1–11

    Article  MATH  MathSciNet  Google Scholar 

  • Beirlant J., Dierckx G., Goegebeur Y., Matthys G. (1999). Tail index estimation and an exponential regression model. Extremes 2, 177–200

    Article  MATH  MathSciNet  Google Scholar 

  • Berlinet A., Levallois S. (2000). Higher order analysis at Lebesgue points. In M. L. Puri (Ed.) G. G. Roussas Festschrift—Asymptotics in Statistics and Probability (pp. 1–16)

  • Bosq D., Lecoutre J.P. (1987). Théorie de l’Estimation Fonctionnelle. Paris, Economica

    Google Scholar 

  • Collomb G., Hassani S., Sarda P., Vieu P. (1985). Convergence uniforme d’estimateurs de la fonction de hasard pour des observations dépendantes : méthode du noyau et des k-points les plus proches. Comptes Rendus de l’Académie des Sciences de Paris 301, 653–656

    MATH  MathSciNet  Google Scholar 

  • Cutler C.D., Dawson D.A. (1990). Nearest-neighbor analysis of a family of fractal distributions. The Annals of Probability 18, 256–271

    Article  MATH  MathSciNet  Google Scholar 

  • Davies S., Hall P. (1999). Fractal analysis of surface roughness by using spatial data. Journal of the Royal Statistical Society, Series B 61, 3–37

    Article  MATH  MathSciNet  Google Scholar 

  • Dekkers A.L. M., de Haan L. (1989). On the estimation of the extreme-value index and large quantile estimation. The Annals of Statistics 17, 1795–1832

    Article  MathSciNet  Google Scholar 

  • Devroye L. (1979). Recursive estimation of the mode of a multivariate density. The Canadian Journal of Statistics 7, 159–167

    Article  MATH  MathSciNet  Google Scholar 

  • Devroye L. (1997). Universal smoothing factor selection in density estimation. Test 6, 223–320

    Article  MATH  MathSciNet  Google Scholar 

  • Devroye L., Györfi L., Lugosi G. (1996). A probabilistic theory of pattern recognition. New York, Springer

    MATH  Google Scholar 

  • Drees H., Kaufmann E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Processes and their Applications 75, 149–172

    Article  MATH  MathSciNet  Google Scholar 

  • Einmahl J.H. J., Mason D.M. (1992). Generalized quantile processes. The Annals of Statistics 20, 1062–1078

    Article  MathSciNet  Google Scholar 

  • Embrechts P., Klüppelberg C., Mikosch T. (1997). Modelling extremal Events. Berlin, Springer

    MATH  Google Scholar 

  • van Es B. (1992). Asymptotics for least squares cross-validation bandwidths in nonsmooth cases. The Annals of Statistics 20, 1647–1657

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F., Vieu P. (2000). Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés. Comptes Rendus de l’Académie des Sciences de Paris 330, 139–142

    MATH  MathSciNet  Google Scholar 

  • Feuerverger A., Hall P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. The Annals of Statistics 27, 760–781

    Article  MATH  MathSciNet  Google Scholar 

  • Fix E., Hodges J.L. Jr. (1951). Discriminatory analysis, nonparametric discrimination: consistency properties. In Report number 4, USAF School of Aviation Medicine, Randolph Field, Texas

  • Fukunaga K., Hostetler L.D. (1973). Optimization of k-nearest neighbor density estimates. IEEE Transactions on Information Theory 19, 320–326

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes M.I., de Haan L., Peng L. (2002). Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5, 387–414

    Article  MathSciNet  Google Scholar 

  • Hall P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. Journal of Multivariate Analysis 32, 177–203

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P., Welsh A. (1985). Adaptive estimates of parameters of regular variation. The Annals of Statistics 13, 331–341

    Article  MATH  MathSciNet  Google Scholar 

  • Hill B.M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3, 1163–1174

    Article  MATH  MathSciNet  Google Scholar 

  • Lepski O.V., Mammen E., Spokoiny V.G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. The Annals of Statistics 25, 929–947

    Article  MATH  MathSciNet  Google Scholar 

  • Loftsgaarden D.O., Quesenberry C.P. (1965). A nonparametric estimate of a multivariate density function. The Annals of Mathematical Statistics 36, 1049–1051

    Article  MATH  MathSciNet  Google Scholar 

  • Mason D.M. (1988). A strong invariance theorem for the tail empirical process. Annales de l’Institut Henri Poincaré (B) 24, 491–506

    MATH  Google Scholar 

  • Moore D.S., Yackel J.W. (1977). Large sample properties of nearest neighbour density function estimates. In: Gupta S.S., Moore D.S. (Ed.), Statistical decision theory and related topics II. New York: Academic

  • Picard D., Tribouley K. (2000). Adaptive confidence interval for pointwise curve estimation. The Annals of Statistics 28, 298–335

    Article  MATH  MathSciNet  Google Scholar 

  • Pickands J. III (1975). Statistical inference using extreme order statistics. The Annals of Statistics 3, 119–131

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin W. (1987). Real and complex analysis – (3rd Ed). New York, McGraw–Hill

    MATH  Google Scholar 

  • Shorack G.R., Wellner J.A. (1986). Empirical processes with applications to statistics. New York, Wiley

    Google Scholar 

  • Wilks S.S. (1962). Mathematical statistics. New York, Wiley

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Biau.

About this article

Cite this article

Beirlant, J., Berlinet, A. & Biau, G. Higher order estimation at Lebesgue points. Ann Inst Stat Math 60, 651–677 (2008). https://doi.org/10.1007/s10463-007-0112-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0112-x

Keywords

Navigation