Skip to main content
Log in

Limit laws for the Randić index of random binary tree models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We investigate the Randić index of random binary trees under two standard probability models: the one induced by random permutations and the Catalan (uniform). In both cases the mean and variance are computed by recurrence methods and shown to be asymptotically linear in the size of the tree. The recursive nature of binary search trees lends itself in a natural way to application of the contraction method, by which a limit distribution (for a suitably normalized version of the index) is shown to be Gaussian. The Randić index (suitably normalized) is also shown to be normally distributed in binary Catalan trees, but the methodology we use for this derivation is singularity analysis of formal generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban A. (1982). Highly discriminating distance-based topological index. Chemical Physics Letters 89, 399–404

    Article  MathSciNet  Google Scholar 

  • Balaban A. (1983). Topological indices based on topological distances in molecular graphs. Pure and Applied Chemistry 55, 199–206

    Article  Google Scholar 

  • Basak S. (1987). Use of molecular complexity indices in predictive pharmacology and toxicology: A QSAR approach. Medical Science Research 15, 605–609

    Google Scholar 

  • Bonchev D., Trinajstić N. (1983). Information theoretic indices for characterization of chemical structure. Research Studies Press, Chichester: Wiley

    Google Scholar 

  • Chern H., Hwang H., Tsai T. (2002). An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms. Journal of Algorithms 44, 177–225

    Article  MathSciNet  MATH  Google Scholar 

  • Christophi C., Mahmoud H. (2005). The oscillatory distribution of distances in random tries. The Annals of Applied Probability 15, 1536–1564

    Article  MathSciNet  MATH  Google Scholar 

  • Clark L., Moon J. (2000). On the general Randic index for certain families of trees. Ars Combinatoria 54, 223–235

    MathSciNet  MATH  Google Scholar 

  • Devillers J., Balaban A. (1999). Topological indices and related descriptors in QSAR and QSPR. Amsterdam: Gordon & Breach.

  • Devroye L., Neininger R. (2004). Distances and finger search in random binary search trees. SIAM Journal on Computing 33, 647–658

    Article  MathSciNet  MATH  Google Scholar 

  • Estrada E. (2002). The structural interpretation of the Randic index. Electronic Journal of Molecular Design 1, 360–366

    Google Scholar 

  • Gutman I., Polansky O. (1986). Mathematical Concepts in Organic Chemistry. Berlin: Springer

    MATH  Google Scholar 

  • Gutman I., Trinajstić N. (1972). Chemical Physics Letters 17, 535–538

    Article  Google Scholar 

  • Harary F. (1969). Graph theory. Reading: Addison-Wesley.

    Google Scholar 

  • Hwang H. (1998). On convergence rates in the central limit theorems for combinatorial structures. European Journal of Combinatorics 19, 329–343

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang H., Neininger R. (2002). Phase change of limit laws in the quicksort recurrence under varying toll functions. SIAM Journal on Computing 31, 1687–1722

    Article  MathSciNet  MATH  Google Scholar 

  • Janson S. (2003). The Wiener index of simply generated random trees. Random Structures and Algorithms 22, 337–358

    Article  MathSciNet  MATH  Google Scholar 

  • Janson S., Chassaing P. (2004). The center of mass of the ISE and the Wiener index of trees. Electronic Communications of Probability 9, 178–187

    MathSciNet  MATH  Google Scholar 

  • Kemp R. (1984). Fundamentals of the average case analysis of particular algorithms. New York: Wiley.

    MATH  Google Scholar 

  • Kier L., Hall L. (1976). Molecular connectivity in chemistry and drug research. New York: Academic.

    Google Scholar 

  • Kirschenhofer P., Prodinger H. (1998). Comparisons in Hoare’s Find algorithm. Combinatorics, Probability, and Computing 7, 111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Kirschenhofer P., Prodinger H., Martí nez C. (1997). Analysis of Hoare’s FIND algorithm with median-of-three partition. Random Structures and Algorithms 10, 143–156

    Article  MathSciNet  MATH  Google Scholar 

  • Knuth D. (1998). The art of computer programming, Vol 3: sorting and searching, 2nd Edn. Reading: Addison-Wesley.

    Google Scholar 

  • Mahmoud H. (1992). Evolution of random search trees. New York: Wiley.

    MATH  Google Scholar 

  • Mahmoud H. (2000). Sorting: A distribution theory. New York: Wiley.

    MATH  Google Scholar 

  • Mahmoud M., Neininger R. (2002). Distribution of distances in random binary search trees. The Annals of Applied Probability 13, 253–276

    MathSciNet  Google Scholar 

  • Miličević A., Nikolić S. (2004). On variable Zagreb indices. Croatia Chemica Acta 77, 97–101

    Google Scholar 

  • Neininger R. (2001). On a multivariate contraction method for random recursive structures with applications to Quicksort. Random Structures and Algorithms 19, 498–524

    Article  MathSciNet  MATH  Google Scholar 

  • Neininger R. (2002). The Wiener index of random trees. Combinatorics, Probability and Computing 11, 587–597

    Article  MathSciNet  MATH  Google Scholar 

  • Neininger R., Rüschendorf L. (2004). A general limit theorem for recursive algorithms and combinatorial structures. The Annals of Applied Probability 14, 378–418

    Article  MathSciNet  MATH  Google Scholar 

  • Panholzer A. (2003). Analysis of multiple quickselect variants. Theoretical Computer Science 302, 45–91

    Article  MathSciNet  MATH  Google Scholar 

  • Panholzer A., Prodinger H. (1998). A generating functions approach for the analysis of grand averages for Multiple Quickselect. Random Structures and Algorithms 13, 189–209

    Article  MathSciNet  MATH  Google Scholar 

  • Panholzer A., Prodinger H. (2004). Spanning tree size in random binary search trees. The Annals of Applied Probability 14, 718–733

    Article  MathSciNet  MATH  Google Scholar 

  • Pittel B. (1999). Normal convergence problem? Two moments and a recurrence may be the clues. The Annals of Applied Probability 9, 1260–1302

    Article  MathSciNet  MATH  Google Scholar 

  • Prodinger H. (1995). Multiple quickselect—Hoare’s Find algorithm for several elements. Information Processing Letters 56, 123–129

    Article  MathSciNet  MATH  Google Scholar 

  • Quintas L., Szymański J. (1992). Nonuniform random recursive trees with bounded degree. In Sets, Graphs, and Numbers: Colloquia Mathematica Societas Janos Bolyai 60, 611–620

    Google Scholar 

  • Rachev S., Rüschendorf L. (1995). Probability metrics and recursive algorithms. Advances in Applied Probability 27, 770–799

    Article  MathSciNet  MATH  Google Scholar 

  • Randic M. (1975). On characterization of molecular branching. Journal of the American Chemical Society 97, 6609–6615

    Article  Google Scholar 

  • Rösler U. (1991). A limit theorem for “Quicksort”. RAIRO Informatiques Théoriques et Applications 25, 85–100

    MATH  Google Scholar 

  • Rösler U. (2001). On the analysis of stochastic divide and conquer algorithms. Algorithmica 29, 238–261

    Article  MathSciNet  MATH  Google Scholar 

  • Rösler U., Rüschendorf L. (2001). The contraction method for recursive algorithms. Algorithmica 29, 3–33

    Article  MathSciNet  MATH  Google Scholar 

  • Trinajstić N. (1992). Chemical graph theory. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wiener H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society 69, 17–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam M. Mahmoud.

About this article

Cite this article

Feng, Q., Mahmoud, H.M. & Panholzer, A. Limit laws for the Randić index of random binary tree models. AISM 60, 319–343 (2008). https://doi.org/10.1007/s10463-006-0107-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0107-z

Keywords

Navigation