Skip to main content
Log in

Image segmentation by polygonal Markov Fields

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper advocates the use of multi-coloured polygonal Markov fields for model-based image segmentation. The formal construction of consistent multi-coloured polygonal Markov fields by Arak–Clifford–Surgailis and its dynamic representation are specialised and adapted to our context. We then formulate image segmentation as a statistical estimation problem for a Gibbsian modification of an underlying polygonal Markov field, and discuss the choice of Hamiltonian. Monte Carlo techniques, including novel Gibbs updates for the Arak model, to estimate the model parameters and find an optimal partition of the image are developed. The approach is applied to image data, the first published application of polygonal Markov fields to segmentation problems in the mathematical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arak, T. (1982). On Markovian random fields with finite number of values. In: 4th USSR-Japan symposium on probability theory and mathematical statistics, Abstracts of Communications. Tbilisi

  • Arak T., Surgailis D. (1989). Markov fields with polygonal realisations. Probabability Theory and Related Fields, 80, 543–579

    Article  MATH  Google Scholar 

  • Arak T., Surgailis D. (1991). Consistent polygonal fields. Probabability Theory and Related Fields, 89, 319–346

    Article  MATH  Google Scholar 

  • Arak T., Clifford P., Surgailis D. (1993). Point-based polygonal models for random graphs. Advances in Applied Probability, 25, 348–372

    Article  MATH  Google Scholar 

  • Baddeley A.J., van Lieshout M.N.M. (1992). ICM for object recognition. In: Dodge Y., Whittaker J. (Eds) Computational Statistics, Vol 2. Heidelberg, Physica/Springer, pp. 271–286

    Google Scholar 

  • Borkar, V., Mitter, S. K. (1993). Stochastic processes that generate polygonal and related random fields, Research Report LIDS-P2216, MIT

  • Clifford P., Middleton R.D. (1989). Reconstruction of polygonal images. Journal of Applied Statistics, 16, 409–422

    Article  Google Scholar 

  • Clifford, P., Nicholls, G. K. (1994). A Metropolis sampler for polygonal image reconstruction, Electronic version available at: http://www.stats.ox.ac.uk/~ clifford/ papers/met_poly.html

  • Gimel’farb G.L. (1999). Image textures and Gibbs random fields. Dordrecht, Kluwer

    MATH  Google Scholar 

  • Green P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732

    Article  MATH  Google Scholar 

  • Green P.J., Richardson S., Hjort N.L. (Eds) (2003). Highly structured stochastic systems, Oxford Statistical Science Series Vol 27. Oxford, Oxford University Press

    Google Scholar 

  • Haario H., Saksman E. (1991). Simulated annealing process in general state space. Advances in Applied Probability, 23, 886–893

    Article  Google Scholar 

  • Heikkinen J., Arjas E. (1998). Non-parametric Bayesian estimation of a spatial Poisson intensity. Scandinavian Journal of Statistics, 25, 435–450

    Article  MATH  Google Scholar 

  • Hurn M.A., Husby O., Rue H. (2003). Advances in Bayesian image analysis. In: Green P.J., Richardson S., Hjort N.L.(Eds) Highly structured stochastic systems, Oxford Statistical Science Series Vol 27. Oxford, Oxford University Press, pp. 323–325

    Google Scholar 

  • Liggett T. (1985). Interacting particle systems. New York, Springer

    MATH  Google Scholar 

  • Møller J., Skare Ø. (2001). Bayesian image analysis with coloured Voronoi tessellations and a view to applications in reservoir modelling. Statistical Modelling, 1, 213–232

    Article  Google Scholar 

  • Møller J., Waagepetersen R.P. (1998). Markov connected component fields. Advances in Applied Probability (SGSA), 30, 1–35

    Article  MATH  Google Scholar 

  • Nicholls G.K. (1998). Bayesian image analysis with Markov chain Monte Carlo and coloured continuum triangulation models. Journal of the Royal Statistical Society, Series B, 60, 643–659

    Article  MATH  Google Scholar 

  • Ortner M. (2004). Processus ponctuels marqués pour l’extraction automatique de caricatures de bâtiments à partir de modèles numériques d’elévation. PhD Thesis, University of Nice–Sophia Antipolis.

  • Osher S., Paragios N. (Eds) (2003). Geometric level set methods in imaging, vision, and graphics. New York, Springer

    MATH  Google Scholar 

  • Paskin M.A., Thrun S. (2005). Robotic mapping with polygonal random fields. In: Proceedings in Artificial Intelligence UAI-05

  • Rosenfeld A., Kak A.C. (1982). Digital picture processing, 2nd edn, Vol 2. Orlando, Academic Press

    Google Scholar 

  • Schreiber, T. (2005). Random dynamics and thermodynamic limits for polygonal Markov fields in the plane. Advances in Applied Probability, 37 (4) (in press).

  • Tjelmeland H., Besag J. (1998). Markov random fields with higher order interactions. Scandinavian Journal of Statistics, 25, 415–433

    Article  MATH  Google Scholar 

  • Vincent, L. (1999). Mathematical morphology. In: O. Barndorff–Nielsen, W. S. Kendall, M. N. M. van Lieshout (Eds.) Stochastic geometry, likelihood and computation. Boca Raton: CRC Press/Chapman and Hall

  • Winkler G. (2003). Image analysis, random fields and Markov chain Monte Carlo methods, A mathematical introduction, 2nd edn, Applications of Mathematics, Stochastic Modelling and Applied Probability vol. 27. Berlin Heidelberg New York, Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. M. van Lieshout.

Additional information

Work carried out under project PNA4.3 ‘Stochastic Geometry’. This research was supported by the EC 6th Framework Programme Priority 2 Information Society Technology Network of Excellence MUSCLE (Multimedia Understanding through Semantics, Computation and Learning; FP6-507752), and partially by the Foundation for Polish Science (FNP) and by the Polish Minister of Scientific Research and Information Technology, grant 1 P03A 018 28 (2005-2007) [the third author].

About this article

Cite this article

Kluszczyński, R., van Lieshout, M.N.M. & Schreiber, T. Image segmentation by polygonal Markov Fields. AISM 59, 465–486 (2007). https://doi.org/10.1007/s10463-006-0062-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0062-8

Keywords

Navigation