Skip to main content
Log in

On the Stationary Version of the Generalized Hyperbolic ARCH Model

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper finds conditions under which the generalized hyperbolic ARCH-type model is strictly stationary. Properties of the model are investigated and in particular an estimation procedure is proposed. The resulting stationary model provides with a robust non-Gaussian ARCH-type alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M., Stegun I.A. (eds) (1992). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York Reprint of the 1972 edition.

    Google Scholar 

  • Andersson J. (2001). On the normal inverse Gaussian stochastic volatility model. Journal of Business Economic Statistics 19(1):44–54

    Article  MathSciNet  Google Scholar 

  • Bain L.J. (1969). Moments of non-central t and non-central F-distribution. The American Statistician. 23(4):33–34

    Article  Google Scholar 

  • Barndorff-Nielsen O.E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society. London A. 353:401–419

    Google Scholar 

  • Barndorff-Nielsen O.E. (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1):1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen O.E., Shephard N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion). Journal of the Royal Statistical Society. Series B. Statistical Methodology 63:167–241

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics. 69:542–47

    Article  Google Scholar 

  • Bollerslev T., Chou R.C., Kroner K.F. (1992). ARCH modelling in finace: a review of the theory and empirical evidence. Journal of Econometrics 52:5–56

    Article  MATH  Google Scholar 

  • Cox D.R. (1981). Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics 8:93–115

    MATH  Google Scholar 

  • Eberlein, E., Hammerstein, E.A. (2004). Generalized hyperbolic and inverse Gaussian distributions: Limiting cases and approximation of processes. In: R.C. Dalang, M. Dozzi, F. Russo (Eds.), Seminar on stochastic analysis, random fields and applications IV, progress in probability, vol. 58, Birkhuser, pp. 221–264

  • Engle R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50(4):987–1008

    Article  MATH  MathSciNet  Google Scholar 

  • Gaver D.P., Lewis P.A.W. (1980). First-order autoregressive gamma sequences and point processes. Advances in Applied Probability 12:727–745

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs P.A., Lewis P.A.W. (1977). A mixed autoregressive-moving average exponential sequence and point process (EARMA(1, 1)). Advances in Applied Probability 9:87–104

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen M.B., Lunde A. (2001). The NIG-S & ARCH model: a fat tailed, stochastic, and autoregressive conditional heteroskedastic volatility model. Econometrics Journal 4:319–342

    Article  MATH  MathSciNet  Google Scholar 

  • Joe H. (1996). Time series models with univariate margins in the convolution-closed infinitely divisible class. Journal of Applied Probability 33:664–77

    Article  MATH  MathSciNet  Google Scholar 

  • Jørgensen, B. (1982). Statistical properties of the generalized inverse Gaussian distribution. Lecture notes in statistics, vol. 9. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Jørgensen B., Song P. (1998). Stationary time series models with exponentials dispersion model margins. Journal of Applied Probability 35:78–92

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance A.J. (1982). The innovation distribution of a gamma distributed autoregressive process. Scandinavian Journal of Statistics 9:234–36

    MATH  Google Scholar 

  • Lawrance A.J. (1991). Directionality and reversivility in time series. International Statistical Review 59:67–79

    Article  Google Scholar 

  • Lawrance A.J., Lewis P.A.W. (1977). An exponential moving-average sequence and point process (EMA 1). Journal of Applied Probability 14:98–113

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance A.J., Lewis P.A.W. (1980). The exponential autoregressive-moving average EARMA (p, q) process. Journal of the Royal Statistical Society. Series B. Statistical Methodology 42:150–61

    MATH  MathSciNet  Google Scholar 

  • Liu J.S., Wong W.H., Kong A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimation and augmentation schemes. Biometrika 81:27–40

    Article  MATH  MathSciNet  Google Scholar 

  • Louis T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B. Statistical Methodology 44:226–33

    MATH  MathSciNet  Google Scholar 

  • McKenzie E. (1986). Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Advances in Applied Probability 18:679–705

    Article  MATH  MathSciNet  Google Scholar 

  • McKenzie E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability 20:822–835

    Article  MATH  MathSciNet  Google Scholar 

  • Mencía, F.J., Sentana, E. (2004). Estimation and testing of dynamic models with generalised hyperbolic innovations. Technical Report 0411, CEMFI.

  • Nelson D.B. (1990). Stationarity and persistance in the GARCH(1,1) model. Econometric Theory 6:318–334

    Article  MathSciNet  Google Scholar 

  • Pitt M.K., Walker S.G. (2005). Constructing stationary time series models using auxiliary variables with applications. Journal of the American Statistical Association 100:554–564

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt M.K., Chatfield C., Walker S.G. (2002). Constructing first order autoregressive models via latent processes. Scandinavian Journal of Statistics 29:657–663

    Article  MATH  MathSciNet  Google Scholar 

  • Prause, K. (1999). The generalized hyperbolic model: estimation, financial derivatives, and risk measures. Ph.D. Thesis, Universität Freiburg.

  • Press, W., Teukolsky, S., Vetterling, W., Flannery, B. (1992). Numerical Recipes. C. Cambridge University Press.

  • Raible, S. (2000). Lévy processes in finance: theory, numerics, and empirical facts. Ph.D. Thesis, Universität Freiburg.

  • Robert C.P., Casella G. (2002). Monte Carlo statistical methods, 3rd edn. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  • Shephard N. (1996). Statistical aspects of ARCH and stochastic volatility. In: Cox D.R., Hinkley D.V., Barndorff-Nielsen O.E. (eds). Time series models in econometrics finance and other fields. Chapman and Hall, London, pp. 1–67

    Google Scholar 

  • Walker S.G. (1996). An EM algoritm for nonlinear random effects models. Biometrics 52:934–944

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsés H. Mena.

About this article

Cite this article

Mena, R.H., Walker, S.G. On the Stationary Version of the Generalized Hyperbolic ARCH Model. AISM 59, 325–348 (2007). https://doi.org/10.1007/s10463-006-0052-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0052-x

Keywords

Navigation