Skip to main content
Log in

On the Kernel Rule for Function Classification

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let X be a random variable taking values in a function space \(\mathcal{F}\), and let Y be a discrete random label with values 0 and 1. We investigate asymptotic properties of the moving window classification rule based on independent copies of the pair (X,Y). Contrary to the finite dimensional case, it is shown that the moving window classifier is not universally consistent in the sense that its probability of error may not converge to the Bayes risk for some distributions of (X,Y). Sufficient conditions both on the space \(\mathcal{F}\) and the distribution of X are then given to ensure consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham C., Cornillon P.A., Matzner-Løber E., Molinari N. (2003). Unsupervised curve clustering using B-splines. Scandinavian Journal of Statistics 30:581–595

    Article  MATH  Google Scholar 

  • Akaike H. (1954). An approximation to the density function. Annals of the Institute of Statistical Mathematics 6:127–132

    Article  MATH  MathSciNet  Google Scholar 

  • Antoniadis A., Sapatinas T. (2003). Wavelet methods for continuous-time prediction using representations of autoregressive processes in Hilbert spaces. Journal of Multivariate Analysis 87:133–158

    Article  MATH  MathSciNet  Google Scholar 

  • Biau G., Bunea F., Wegkamp M.H. (2005). Functional classification in Hilbert spaces. IEEE Transactions on Information Theory 51:2163–2172

    Article  MathSciNet  Google Scholar 

  • Bosq D. (2000). Linear processes in function spaces—theory and applications. Lecture Notes in Mathematics. Springer–Verlag, New York

    MATH  Google Scholar 

  • Boucheron S., Bousquet O., Lugosi G. (2005). Theory of classification: A survey of some recent advances. ESAIM: Probability and Statistics 9:323–375

    MATH  MathSciNet  Google Scholar 

  • Ciesielski Z. (1961). Hölder conditions for the realizations of Gaussian processes. Transactions of the American Mathematical Society 99:403–413

    Article  MATH  MathSciNet  Google Scholar 

  • Cover T.M., Hart P.E. (1965). Nearest neighbor pattern classification. The Annals of Mathematical Statistics 36:1049–1051

    Google Scholar 

  • Devroye L., Krzyżak A. (1989). An equivalence theorem for L 1 convergence of the kernel regression estimate. Journal of Statistical Planning and Inference 23:71–82

    Article  MATH  MathSciNet  Google Scholar 

  • Devroye L., Györfi L., Lugosi G. (1996). A probabilistic theory of pattern recognition. Springer–Verlag, New York

    MATH  Google Scholar 

  • Diabo-Niang, S., Rhomari, N. (2001). Nonparametric regression estimation when the regressor takes its values in a metric space. University Paris VI, Technical Report, http://www.lsta.upmc.fr/

  • Ferraty F., Vieu P. (2000). Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés. Comptes Rendus de l’Académie des Sciences de Paris 330:139–142

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F., Vieu P. (2002). The functional nonparametric model and application to spectrometric data. Computational Statistics 17:545–564

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F., Vieu P. (2003). Curves discrimination: a nonparametric functional approach. Computational Statistics and Data Analysis 44:161–173

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P., Poskitt D., Presnell B. (2001). A functional data-analytic approach to signal discrimination. Technometrics 43:1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Kneip A., Gasser T. (1992). Statistical tools to analyse data representing a sample of curves. The Annals of Statistics 20:1266–1305

    MATH  MathSciNet  Google Scholar 

  • Kolmogorov A.N., Tihomirov V.M. (1961). ɛ-entropy and ɛ-capacity of sets in functional spaces. American Mathematical Society Translations, Series 2, 17:277–364

    MathSciNet  Google Scholar 

  • Kulkarni S.R., Posner S.E. (1995). Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Transactions on Information Theory 41:1028–1039

    Article  MATH  MathSciNet  Google Scholar 

  • Mattila P. (1980). Differentiation of measures on uniform spaces. Lecture Notes in Mathematics, vol. 794, pp. 261–283. Springer–Verlag, Berlin

    Google Scholar 

  • McDiarmid C. (1989). On the method of bounded differences. Surveys in Combinatorics 1989 (pp. 148–188). Cambridge University Press, Cambridge

    Google Scholar 

  • Nadaraya E.A. (1964). On estimating regression. Theory of Probability and its Applications 9:141–142

    Article  Google Scholar 

  • Nadaraya E.A. (1970). Remarks on nonparametric estimates for density functions and regression curves. Theory of Probability and its Applications 15:134–137

    Article  MATH  Google Scholar 

  • Parzen E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33: 1065–1076

    MathSciNet  MATH  Google Scholar 

  • Preiss D., Tiser J. (1982). Differentiation of measures on Hilbert spaces. Lecture Notes in Mathematics, vol. 945, pp. 194–207. Springer–Verlag, Berlin

    Google Scholar 

  • Ramsay J.O., Silverman B.W. (1997). Functional data analysis. Springer–Verlag, New York

    MATH  Google Scholar 

  • Rice J.A., Silverman B.W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society, Series B 53:233–243

    MATH  MathSciNet  Google Scholar 

  • Rosenblatt M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics 27:832–837

    MathSciNet  MATH  Google Scholar 

  • Rudin W. (1987). Real and complex analysis (3rd ed). McGraw-Hill, New York

    MATH  Google Scholar 

  • Tiser J. (1988). Differentiation theorem for Gaussian measures on Hilbert space. Transactions of the American Mathematical Society 308:655–666

    Article  MATH  MathSciNet  Google Scholar 

  • Van der Vaart A.W., Wellner J.A. (1996). Weak convergence and empirical processes – with applications to statistics. Springer–Verlag, New York

    MATH  Google Scholar 

  • Watson G.S. (1964). Smooth regression analysis. Sankhyā, Series A 26:359–372

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Biau.

About this article

Cite this article

Abraham, C., Biau, G. & Cadre, B. On the Kernel Rule for Function Classification. Ann Inst Stat Math 58, 619–633 (2006). https://doi.org/10.1007/s10463-006-0032-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0032-1

Keywords

Navigation