Skip to main content
Log in

Local c- and E-optimal Designs for Exponential Regression Models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we investigate local E- and c-optimal designs for exponential regression models of the form \(\sum_{i=1}^k a_i\exp\left(-\mu_ix\right)\). We establish a numerical method for the construction of efficient and local optimal designs, which is based on two results. First, we consider for fixed k the limit μ i → γ (i = 1, ... , k) and show that the optimal designs converge weakly to the optimal designs in a heteroscedastic polynomial regression model. It is then demonstrated that in this model the optimal designs can be easily determined by standard numerical software. Secondly, it is proved that the support points and weights of the local optimal designs in the exponential regression model are analytic functions of the nonlinear parameters μ 1, ... , μ k . This result is used for the numerical calculation of the local E-optimal designs by means of a Taylor expansion for any vector (μ 1, ... , μ k ). It is also demonstrated that in the models under consideration E-optimal designs are usually more efficient for estimating individual parameters than D-optimal designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez I., Virto R., Raso J., Condon S. (2003). Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innovative Food Science & Emerging Technologies 4(2): 195–202

    Article  Google Scholar 

  • Becka M., Urfer W. (1996). Statistical aspects of inhalation toxicokinetics. Environmental and Ecological Statistics 3, 51–64

    Article  Google Scholar 

  • Becka M., Bolt H.M., Urfer W. (1993). Statistical evaluation of toxicokinetic data. Environmetrics 4, 311–322

    Article  Google Scholar 

  • Chaloner K., Verdinelli I. (1995). Bayesian experimental design: a review. Statistical Science 10, 273–304

    MATH  MathSciNet  Google Scholar 

  • Chernoff H. (1953). Local optimal designs for estimating parameters. Annals of Mathematical Statistics 24, 586–602

    MathSciNet  Google Scholar 

  • Dette H., Haines L. (1994). E-optimal designs for linear and nonlinear models with two parameters. Biometrika 81, 739–754

    MATH  MathSciNet  Google Scholar 

  • Dette H., Studden W.J. (1993). Geometry of E-optimality. Annals of Statistics 21, 416–433

    MATH  MathSciNet  Google Scholar 

  • Dette H., Haines L., Imhof L.A. (1999). Optimal designs for rational models and weighted polynomial regression. Annals of Statistics 27, 1272–1293

    Article  MATH  MathSciNet  Google Scholar 

  • Dette, H., Melas, V.B., Pepelyshev, A. (2002). Optimal designs for a class of nonlinear regression models. Preprint, Ruhr-Universität Bochum. http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm

  • Dette H., Melas V.B., Pepelyshev A. (2004). Optimal designs for estimating individual coefficients in polynomial regression – a functional approach. Journal of Statistical Planning and Inference 118, 201–219

    Article  MATH  MathSciNet  Google Scholar 

  • Dette H., Wong W.K. (1999). E-optimal designs for the Michaelis Menten model. Statistics & Probability Letters 44, 405–408

    Article  MATH  MathSciNet  Google Scholar 

  • Fang Z., Wiens D. (2004). Bayesian minimally supported D-optimal designs for an exponential regression model. Communications in Statistics – Theory and Methods 33, 1187–1204

    Article  MATH  MathSciNet  Google Scholar 

  • Fedorov V.V. (1972). Theory of optimal experiments. Academic Press, New York

    Google Scholar 

  • Ford I., Torsney B., Wu C.F.J. (1992). The use of a canonical form in the construction of local optimal designs for non-linear problems. Journal of the Royal Statistical Society, Series B 54, 569–583

    MATH  MathSciNet  Google Scholar 

  • Ford I., Silvey S.D. (1980). A sequentially constructed design for estimating a nonlinear parametric function. Biometrika 67, 381–388

    Article  MATH  MathSciNet  Google Scholar 

  • Gunning R.C., Rossi H. (1965). Analytical functions of several complex variables. Prentice-Hall, Inc, NewYork

    Google Scholar 

  • Han C., Chaloner K. (2003). D- and c-optimal designs for exponential regression models used in pharmacokinetics and viral dynamics. Journal of Statistical Planning and Inference 115, 585–601

    Article  MATH  MathSciNet  Google Scholar 

  • He Z., Studden W.J., Sun D. (1996). Optimal designs for rational models. Annals of Statistics 24, 2128–2142

    Article  MATH  MathSciNet  Google Scholar 

  • Heiligers B. (1994). E-optimal designs in weighted polynomial regression. Annals of Statistics 22, 917–929

    MATH  MathSciNet  Google Scholar 

  • Jennrich R.I. (1969). Asymptotic properties of non-linear least squares estimators. Annals of Mathematical Statistics 40, 633–643

    MathSciNet  Google Scholar 

  • Karlin S., Studden W.J. (1966). Tchebycheff systems: with applications in analysis and statistics. Interscience, New York

    MATH  Google Scholar 

  • Kiefer J. (1974). General equivalence theory for optimum designs (approximate theory). Annals of Statistics 2, 849–879

    MATH  MathSciNet  Google Scholar 

  • Landaw E.W., DiStefano J.J. III. (1984). Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. American Journal of Physiology 246, 665–677

    Google Scholar 

  • Melas V.B. (1978). Optimal designs for exponential regression. Mathematische Operationsforschung Statistik, Series Statistics 9, 45–59

    MATH  MathSciNet  Google Scholar 

  • Melas V.B. (1982). A duality theorem and E-optimality (translated from Russian). Industrial Laboratory 48, 275–296

    Google Scholar 

  • Melas, V.B. (2001). Analytical properties of local D-optimal designs for rational models. In: MODA 6 – advances in model-oriented design and analysis (pp. 201–210). A.C. Atkinson, P. Hackel, W. G. Müller (Eds.) Heidelberg: Physica Verlag.

  • Pronzato L., Walter E. (1985). Robust experimental design via stochastic approximation. Mathematical Biosciences 75, 103–120

    Article  MATH  MathSciNet  Google Scholar 

  • Pukelsheim F., Rieder S. (1992). Efficient rounding of approximate designs. Biometrika 79, 763–770

    Article  MathSciNet  Google Scholar 

  • Pukelsheim F., Torsney B. (1991). Optimal weights for experimental designs on linearly independent support points. Annals of Statistics 19, 1614–1625

    MATH  MathSciNet  Google Scholar 

  • Pukelsheim F. (1993). Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  • Ratkowsky D.A. (1983). Nonlinear regression. Dekker, New York

    MATH  Google Scholar 

  • Ratkowsky D.A. (1990). Handbook of nonlinear regression models. Dekker, New York

    MATH  Google Scholar 

  • Seber G.A.J., Wild C.J. (1989). Nonlinear regression. Wiley, New York

    MATH  Google Scholar 

  • Silvey S.D. (1980). Optimum design. Chapman and Hall, London

    Google Scholar 

  • Studden W.J., Tsay J.Y. (1976). Remez’s procedure for finding optimal designs. Annals of Statistics 4, 1271–1279

    MATH  MathSciNet  Google Scholar 

  • Wu C.F.J. (1985). Efficient sequential designs with binary data. Journal of the American Statistical Association 80, 974–984

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Dette.

About this article

Cite this article

Dette, H., Melas, V.B. & Pepelyshev, A. Local c- and E-optimal Designs for Exponential Regression Models. Ann Inst Stat Math 58, 407–426 (2006). https://doi.org/10.1007/s10463-006-0031-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0031-2

Keywords

AMS Subject classification

Navigation