Skip to main content
Log in

Testing for Tail Independence in Extreme Value models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let (X,Y) be a random vector which follows in its upper tail a bivariate extreme value distribution with reverse exponentialmargins. We show that the conditional distribution function (df) of X + Y, given that X + Y>c, converges to the df F (t) = t 2, \(t \in [0,1]\), as \(c\uparrow 0\) if and only if X,Y are tail independent. Otherwise, the limit is F (t) = t. This is utilized to test for the tail independence of X, Y via various tests, including the one suggested by the Neyman–Pearson lemma. Simulations show that the Neyman–Pearson test performs best if the threshold c is close to 0, whereas otherwise it is the Kolmogorov–Smirnov test that performs best. The mathematical conditions are studied under which the Neyman–Pearson approach actually controls the type I error. Our considerations are extended to extreme value distributions in arbitrary dimensions as well as to distributions which are in a differentiable spectral neighborhood of an extreme value distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coles S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, Springer, New York

    MATH  Google Scholar 

  • Coles S.G., Heffernan J.E., Tawn J.A. (1999). Dependence measures for extreme value analyses. Extremes 2:339–365

    Article  MATH  Google Scholar 

  • Dupuis D.J., Tawn J.A. (2001). Effects of mis–specification in bivariate extreme value problems. Extremes 4:315–330

    Article  MathSciNet  MATH  Google Scholar 

  • Falk M., Reiss R.-D. (2005). On Pickands coordinates in arbitrary dimensions. Journal of Multivariate Analysis 92: 426–453

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W. (1971). An Introduction to Probability Theory and its Applications, Vol II, 2nd ed. John Wiley, New York

    MATH  Google Scholar 

  • Fuller W.A. (1976). Introduction to Statistical Time Series. John Wiley, New York

    MATH  Google Scholar 

  • Galambos J. (1987). The Asymptotic Theory of Extreme Order Statistics, 2nd ed. Krieger, Malabar

    MATH  Google Scholar 

  • Geffroy J. (1958). Contribution à la théorie des valeurs extrêmes. Publications de l’Institut de Statistique de l’Université de Paris 7:37–121

    MathSciNet  Google Scholar 

  • Geffroy J. (1959). Contribution à la théorie des valeurs extrêmes, II. Publications de l’Institut de Statistique de l’Université de Paris 8:3–65

    MathSciNet  Google Scholar 

  • Ghoudi K., Khoudraji A., Rivest L.P. (1998). Statistical properties of couples of bivariate extreme–value copulas. Canadian Journal of Statistics 26:187–197

    Article  MATH  MathSciNet  Google Scholar 

  • Gumbel E.J. (1960). Bivariate exponential distribution. Journal of the American Statistical Association 55:698–707

    Article  MATH  MathSciNet  Google Scholar 

  • Heffernan J.E. (2000). A directory of coefficients of tail dependence. Extremes 3:279–290

    Article  MATH  MathSciNet  Google Scholar 

  • Hüsler J., Reiss R.–D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics and Probability Letters 7:283–286

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson N.L., Kotz S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York

    MATH  Google Scholar 

  • Kotz S., Nadarajah S. (2000). Extreme Value Distributions. Imperial College Press, London

    MATH  Google Scholar 

  • Ledford A., Tawn J.A. (1996). Statistics for near independence in multivariate extreme values. Biometrika 83:169–187

    Article  MATH  MathSciNet  Google Scholar 

  • Ledford A., Tawn J.A. (1997). Modelling dependence within joint tail regions. Journal of the Royal Statistical Society B 59:475–499

    Article  MATH  MathSciNet  Google Scholar 

  • Ledford A., Tawn J.A. (1998). Concomitant tail behaviour for extremes. Advances in Applied Probability 30:197–215

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia K.V. (1970). Families of Bivariate Distributions. Griffin, London

    MATH  Google Scholar 

  • Marshall A.W. and Olkin I. (1976). A multivariate exponential distribution. Journal of the American Statistical Association 62:30–44

    Article  MathSciNet  Google Scholar 

  • Peng L. (1999). Estimation of the coefficients of tail dependence in bivariate extremes. Statistics and Probability Letters 43:399–409

    Article  MATH  MathSciNet  Google Scholar 

  • Pickands III J. (1981). Multivariate extreme value distributions. In: Proceedings of the 43th Session of the International Statistical Institute (Buenos Aires), pp 859–878.

  • Reiss R.–D. (1993). A Course on Point Processes. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Reiss R.–D., Thomas M. (2001). Statistical Analysis of Extreme Values, 2nd ed. Birkhäuser, Basel

    MATH  Google Scholar 

  • Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes, applied Probability, Vol.~4. New York: Springer.

  • Sheskin D.J. (2004). Parametric and Nonparametric Statistical Procedures, 3rd ed. Chapmann & Hall, Boca Raton

    MATH  Google Scholar 

  • Sibuya M. (1960). Bivariate extreme statistics. Annals of the Institute of Statistical Mathematics 11:195–210

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Falk.

About this article

Cite this article

Falk, M., Michel, R. Testing for Tail Independence in Extreme Value models. Ann Inst Stat Math 58, 261–290 (2006). https://doi.org/10.1007/s10463-005-0016-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-005-0016-6

Keywords

Navigation