Skip to main content
Log in

On Some Tests of the Covariance Matrix Under General Conditions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of testing the hypothesis about the covariance matrix of random vectors under the assumptions that the underlying distributions are nonnormal and the sample size is moderate. The asymptotic expansions of the null distributions are obtained up to n −1/2. It is found that in most cases the null statistics are distributed as a mixture of independent chi-square random variables with degree of freedom one (up to n −1/2) and the coefficients of the mixtures are functions of the fourth cumulants of the original random variables. We also provide a general method to approximate such distributions based on a normalization transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson T.W. (1984). An Introduction to Multivariate Analysis (2nd ed). John Wiley & Sons, New York

    MATH  Google Scholar 

  • Bartlett M.S. (1938). Further aspects of the theory of multiple regression. Mathematical Proceedings of the Cambridge Philosophical Society 34:33–40

    Article  MATH  Google Scholar 

  • Bartlett M.S. (1947). Multivariate analysis. Journal of the Royal Statistical Society (Suppl). 9:176–190

    Article  MathSciNet  Google Scholar 

  • Bhattacharya, R. N., & Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Annals of Statistics, 6, 434–451; Corrigendum, ibid. 8 (1980).

    Google Scholar 

  • David A.W. (1977). A differential equation approach to linear combinations of independent chi-squares. Journal of the American Statistical Association 72:212–214

    Article  MathSciNet  Google Scholar 

  • Fang K., Zhang Y. (1990). Generalized Multivariate Analysis. Springer-Verlag, New York

    MATH  Google Scholar 

  • Fujikoshi Y. (1976). Asymptotic expansions for the distributions of some multivariate tests. In: Krishinaiah P.R. (eds). Multivariate Analysis, Vol 4. North Holland, Amsterdam, pp. 55–71

    Google Scholar 

  • Fujikoshi Y. (1997). An asymptotic expansion of the distribution of Hotelling’s T 2-statistic. Journal of Multivariate Analysis 61:187–193

    Article  MATH  MathSciNet  Google Scholar 

  • Fujikoshi Y. (2002a). Asymptotic expansions for the distributions for multivariate basic statistics and one-way MANOVA tests under nonnormality. Journal of Statistical Planning and Inference 108:263–282

    Article  MATH  MathSciNet  Google Scholar 

  • Fujikoshi Y. (2002b). Some recent results on asymptotic expansions of multivariate test statistics for mean vectors under non-normality. Calcutta Statistical Association Bulletin, 52 (Special 4th Triennial Proceedings Volume), Nos. 205–208, 1–46

  • Gupta A.K. (1977). On the distribution of sphericity test criterion in the multivariate Gaussian distribution. Australian & New Zealand Journal of Statistics 19:202–205

    MATH  Google Scholar 

  • Gupta A.K., Chattopadhyay A.K., Krishnaiah P.R. (1975). Asymptotic distributions of the determinants of some random matrices. Communications in Statistics 4:33–47

    Article  MathSciNet  Google Scholar 

  • Gupta A.K., Nagar D.K. (1988). Asymptotic expansion of the nonnull distribution of likelihood ratio statistic for testing multisample sphericity. Communications in Statistics. Theory and Methods 17:3145–3155

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta A.K., Tang J. (1984). Distribution of likelihood ratio statistic for testing equality of covariance matrices of multivariate Gaussian models. Biometrika 71:555–559

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, A. K., Xu, J., & Fujikoshi, Y. (2005). An asymptotic expansion of the distribution of Rao’s U-statistic under a general condition. Journal of Multivariate Analysis (to appear)

  • Hall P. (1992). The Bootstrap and Edgeworth Expansions. Springer-Verlag, New York

    Google Scholar 

  • Ito K. (1968). On the effect of heteroscedasticity and nonnormality upon some multivariate test procedures. In: Krishinaiah P.R. (eds). Multivariate Analysis, Vol 2. Academic Press, New York, pp. 87–120

    Google Scholar 

  • Jensen D.R., Solomon H. (1972). A Gaussian approximation to the distribution of a definite quadratic form. Journal of the American Statistical Association 67:898–902

    Article  Google Scholar 

  • Johnson N.I., Kotz S. (1970). Continuous Univariate Distributions, Vol 2. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Jones M.C., & Faddy, M. J. (2003). A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society. Series B, 65, Part 1, 159–174

    Google Scholar 

  • Kano Y. (1995). An asymptotic expansion of the distribution of Hotellings T 2-statistic under general condition. American Journal of Mathematical and Management Sciences 15:317–341

    MATH  MathSciNet  Google Scholar 

  • Kariya, T., & Kim, P. (1997). Finite sample robustness of tests: an overview. In G. S. Maddala & C. R. Rao (Eds). Handbook of Statistics, Vol. 15, Robust Inference (pp. 645–660).

  • Konishi S., Niki N., Gupta A.K. (1988). Asymptotic expansions for the distribution of quadratic forms in normal variables. Annals of the Institute of Statistical Mathematics 40:279–296

    Article  MATH  MathSciNet  Google Scholar 

  • Kuonen D. (1999). Saddlepoint approximations for distributions of quadratic forms in normal variables. Biometrika 86: 929–935

    Article  MathSciNet  MATH  Google Scholar 

  • Lawley D.N. (1959). Tests of significance in canonical analysis. Biometrika 46:59–66

    MATH  MathSciNet  Google Scholar 

  • Lu Z. -H., King M. (2002). Improving the numerical technique for computing the accumulated distribution of a quadratic form in normal variables. Econometric Reviews 21:149–165

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519–530

    Article  MATH  MathSciNet  Google Scholar 

  • Mathai A.M., Provost S.B. (1992). Quadratic forms in random variables. Marcel Dekker, New York

    MATH  Google Scholar 

  • Muirhead R.J., Waternaux C.M. (1980). Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations. Biometrika 67:31–43

    Article  MATH  MathSciNet  Google Scholar 

  • Muirhead R.J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Muirhead R.J. (1985). Estimating a particular function of the multiple correlation coefficient. Journal of the American Statistical Association 80:923–925

    Article  MathSciNet  Google Scholar 

  • Rao C.R. (1973). Linear Statistical Inference and Its Applications (2nd Ed). Wiley, New York

    MATH  Google Scholar 

  • Siotani M., Hayakawa T., Fujikoshi Y. (1985). Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Sciences Press, Columbus, OH

    MATH  Google Scholar 

  • Solomon H., Stephens M.A. (1977). Distribution of a sum of weighted chi-square variables. Journal of the American Statistical Association 72:881–885

    Article  MATH  Google Scholar 

  • Stuart A., Ord J.K. (1987). Kendall’s Advanced Theory of Statistics, Vol 1 (5th Ed). Oxford University Press, New York

    Google Scholar 

  • Sugiura N. (1972). Locally best invariant test for sphericity and the limiting distribution. Annals of Mathematical Statistics 43:1312–1316

    MathSciNet  MATH  Google Scholar 

  • Tang J., Gupta A.K. (1990). Testing independence of several groups of variables. Journal of Statistical Computation and Simulation 37:27–35

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J., Gupta A.K. (2005). Confidence intervals for the mean value of response function in generalized linear models. Statistica Sinica 15:1081–1096

    MATH  MathSciNet  Google Scholar 

  • Yanagihara H., Matsumoto C., Tonda T. (2004). Asymptotic expansion of the null distribution of the modified normal likelihood ratio criterion for testing Σ=Σ0 under nonnormality. Hiroshima Mathematical Journal 34:81–100

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gupta, A.K., Xu, J. On Some Tests of the Covariance Matrix Under General Conditions. Ann Inst Stat Math 58, 101–114 (2006). https://doi.org/10.1007/s10463-005-0010-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-005-0010-z

Keywords

Navigation