Skip to main content
Log in

On Estimating the Cumulant Generating Function of Linear Processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We compare two estimates of the cumulant generating function of a stationary linear process. The first estimate is based on the empirical moment generating function. The second estimate uses the linear representation of the process and the empirical moment generating function of the innovations. Asymptotic expressions for the mean square errors are derived under short- and long-range dependence. For long-memory processes, the estimate based on the linear representation turns out to have a better rate of convergence. Thus, exploiting the linear structure of the process leads to an infinite gain in asymptotic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beran J. (1991). M-estimators of location for data with slowly decaying serial correlations. Journal of the Americal Statistical Association 86:704–708

    Article  MATH  MathSciNet  Google Scholar 

  • Beran J. (1994). Statistics for long-memory processes. Chapman and Hall, London

    MATH  Google Scholar 

  • Brockwell P.J., Davis R.A. (1987). Time series: Theory and methods. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Csörgő S. (1981). Limit behaviour of the empirical characteristic function. The Annals of Probability 9:130–144

    MathSciNet  Google Scholar 

  • Csörgő S. (1982). The empirical moment generating function. In: Gnedenko B.V., Puri M.L., Vincze I. (eds). Nonparametric statistical inference. North-Holland, London, pp 139–150

    Google Scholar 

  • Csörgő, S. (1986). Testing for normality in arbitrary dimension. The Annals of Statistics 14:708–723

    MathSciNet  Google Scholar 

  • Csörgő S., Mielniczuk J. (1995). Density estimation under long-range dependence. The Annals of Statistics 23: 990–999

    MathSciNet  Google Scholar 

  • Dehling H., Taqqu M.S. (1989). The empirical process of some long-range dependent sequences with an application to U-statistics. The Annals of Statistics 17:1767–1783

    MATH  MathSciNet  Google Scholar 

  • Engel J., Herrmann E., Gasser T. (1994). An iterative bandwidth selector for kernel estimation of densities and their derivatives. Journal of Nonparametric Statistics 4:21–34

    Article  MATH  MathSciNet  Google Scholar 

  • Feuerverger A., Mureika R.A. (1977). The empirical characteristic function and its applications. The Annals of Statistics 5: 88–97

    MATH  MathSciNet  Google Scholar 

  • Ghosh S. (1996). A new graphical tool to detect non-normality. Journal of the Royal Statistical Society B 58: 691–702

    MATH  Google Scholar 

  • Ghosh, S. (1999). T3-plot. Encyclopedia for statistical sciences. Update Vol. 3 (pp 739–744). New York: Wiley

  • Ghosh S. (2003). Estimating the moment generating function of a linear process. Student 4(3):211–218

    Google Scholar 

  • Ghosh S., Beran J. (2000). Two sample T3-plot: A graphical comparison of two distributions. Journal of Computational and Graphical Statistics 9(1):167–179

    Article  MathSciNet  Google Scholar 

  • Ghosh S., Ruymgaart F. (1992). Applications of empirical characteristic functions in some multivariate problems. The Canadian Journal of Statistics 20:429–440

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Surgailis D. (1985). Central limit theorems and other limit theorems for functionals of Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70:191–212

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Surgailis D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and applications to asymptotical normality of Whittle’s estimate. Probability Theory and Related Fields 86:87–104

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Surgailis D. (1999). Central limit theorem for the empirical process of a linear sequence with long memory. Journal of Statistical Planning and Inference 80:81–93

    MATH  MathSciNet  Google Scholar 

  • Granger C.W.J., Joyeux R. (1980). An introduction to long-range time series models and fractional differencing. Journal of Time Series Analysis 1:15–29

    MATH  MathSciNet  Google Scholar 

  • Hall P. (1993). On plug-in rules for local smoothing of density estimators. The Annals of Statistics 21:694–710

    MATH  MathSciNet  Google Scholar 

  • Hall P., Hart J. (1990). Convergence rates in density estimation for data from infinite-order moving average processes. Probability Theory and Related Fields 87:253-274

    Article  MATH  MathSciNet  Google Scholar 

  • Haslett J., Raftery A.E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland’s wind power resource. Invited paper with discussion. Applied Statistics, 38, 1–50.

    Google Scholar 

  • Honda T. (2000). Nonparametric density estimation for a long-range dependent linear process. Annals of the Institute of Statistical Mathematics 52:599–611

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking J.R.M. (1981). Fractional differencing. Biometrika 68:165–176

    Article  MATH  MathSciNet  Google Scholar 

  • Mandelbrot B.B., Wallis J.R. (1969). Computer experiments with fractional Gaussian noises. Water Resources Research 5: 228–267

    Article  Google Scholar 

  • Murota K., Takeuchi K. (1981). The studentized empirical characteristic function and its application to test for the shape of the distribution. Biometrika 68:55–65

    Article  MATH  MathSciNet  Google Scholar 

  • Silverman B.W. (1986). Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Taqqu M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 31:287–302

    Article  MATH  MathSciNet  Google Scholar 

  • Wu W.B., Mielniczuk (2002). Kernel density estimation for linear processes. The Annals of Statistics 30(5):1441–1459

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucharita Ghosh.

About this article

Cite this article

Ghosh, S., Beran, J. On Estimating the Cumulant Generating Function of Linear Processes. Ann Inst Stat Math 58, 53–71 (2006). https://doi.org/10.1007/s10463-005-0009-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-005-0009-5

Keywords

Navigation