Skip to main content
Log in

A Flexible Model for Generalized Linear Regression with Measurement Error

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper focuses on the question of specification of measurement error distribution and the distribution of true predictors in generalized linear models when the predictors are subject to measurement errors. The standard measurement error model typically assumes that the measurement error distribution and the distribution of covariates unobservable in the main study are normal. To make the model flexible enough we, instead, assume that the measurement error distribution is multivariate t and the distribution of true covariates is a finite mixture of normal densities. Likelihood–based method is developed to estimate the regression parameters. However, direct maximization of the marginal likelihood is numerically difficult. Thus as an alternative to it we apply the EM algorithm. This makes the computation of likelihood estimates feasible. The performance of the proposed model is investigated by simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M., Stegun I. (eds). (1972). Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Carroll R.J., Gail M.H., Lubin J.H. (1993). Case-control studies with errors in covariates. Journal of the American Statistical Association 88:185–199

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll R.J., Ruppert D., Stefanski L.A. (1995). Measurement error in non linear models. Chapman & Hall, New York

    Google Scholar 

  • Carroll R.J., Maca J.D., Ruppert D. (1999a). Non parametric regression in the presence of measurement error. Biometrika 86 (3):541–554

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll R.J., Roeder K., Wassermann L. (1999b). Flexible parametric measurement error models. Biometrics 55:44–54

    Article  PubMed  MATH  Google Scholar 

  • Crouch, E.A.C., Spiegelman, D. (1990). The evaluation of integrals of the form \({\int \limits_{- \infty}^\infty {f(t)\exp (- t^{2})}}dt\): application to logistic-normal models. Journal of the American Statistical Association 85:464–467

    Article  MATH  MathSciNet  Google Scholar 

  • Dempster A.P., Laird N.M., Rubin D.B. (1977). Maximum likelihood for incomplete data via EM algorithm. Journal of the Royal Statistical Society, Series B 39:1–38

    MATH  MathSciNet  Google Scholar 

  • Fuller W.A. (1980). Measurement error models. John Wiley, New York

    Google Scholar 

  • Lange K.L., Little R.J.A., Taylor J.M.G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84:881–896

    Article  MathSciNet  Google Scholar 

  • Lange K.L., Sinsheimer J.S. (1993). Normal independent distributions and their applications in robust regression. Journal Computational Graphical Statistics 2:175–198

    Article  MathSciNet  Google Scholar 

  • Liu C.H., Rubin D.B. (1994). The ECME algorithm: a simple extension of EM and ECM with fast monotone convergence. Biometrika 81:633–648

    MATH  MathSciNet  Google Scholar 

  • Liu C.H., Rubin D.B. (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5:19–40

    MATH  MathSciNet  Google Scholar 

  • McCullagh P., Nelder J.A. (1989). Generalized linear models. Chapman and Hall, London

    MATH  Google Scholar 

  • Muller P., Roeder K. (1997). A Bayesian semi parametric model for case-control studies with errors in variables. Biometrika 84(3):523–537

    Article  MathSciNet  Google Scholar 

  • Roeder K., Carroll R.J., Lindsay B.G. (1996). A semi parametric mixture approach to case control studies with errors in covariables. Journal of the American Statistical Association 91:722–732

    Article  MATH  MathSciNet  Google Scholar 

  • Rosner B., Willet W.C., Spiegelman D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within–person measurement error. Statistics in Medicine 8:1075–1093

    Article  PubMed  Google Scholar 

  • Richardson, S., Leblond, L., Jaussent, I., Green, P.J. (2000). Mixture models in measurement error problems, with references to epidemiological studies, in Press.

  • Schafer D.W. (1987). Covariate measurement error in generalized linear models. Biometrika 74:385–391

    Article  MATH  MathSciNet  Google Scholar 

  • Stefanski L.A. (1985). The effects of measurement error on parameter estimation. Biometrika 72:385–389

    Article  MathSciNet  Google Scholar 

  • Stefanski L.A., Carroll R.J. (1985). Covariate measurement error in logistic regression. Annals of Statistics 13:1335–1351

    MATH  MathSciNet  Google Scholar 

  • Sutradhar B.C., Ali M.M. (1989). A generalization of the Wishart distribution for the elliptical model and its moments for the multivariate t model. Journal of Multivariate Analysis 29:155–162

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tathagata Banerjee.

About this article

Cite this article

Roy, S., Banerjee, T. A Flexible Model for Generalized Linear Regression with Measurement Error. Ann Inst Stat Math 58, 153–169 (2006). https://doi.org/10.1007/s10463-005-0002-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-005-0002-z

Keywords

Navigation