Skip to main content
Log in

Genetic differentiation and diversity of Adansonia digitata L (baobab) in Malawi using microsatellite markers

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Baobab (Adansonia digitata L) belonging to Bombacaceae family, is one of the most widely used indigenous priority tree species in sub-Saharan Africa, valued in the cosmetic industry for its seed oil, and powdery fruit pulp for juice making. Baobab has high potential for domestication in southern Africa, therefore understanding its genetic diversity and population structuring is warranted. The study investigated the level of genetic diversity and differentiation of five populations of A. digitata L. sampled from four diverse silvicultural zones in Malawi. Variation at nine microsatellite loci were examined in 150 individual trees. Low mean genetic diversity was expressed through genetic diversity indices: Nei’s genetic diversity (h, 0.18 ± 0.03), Shannon Information Index (I, 0.21 ± 0.07), observed number of alleles (na, 1.47 ± 0.10), effective number of alleles (ne, 1.23 ± 0.04) and percentage polymorphic loci (pp, 48 %). The low genetic variation found is attributed to the population growing in marginal areas of genetic centre of diversity of the species, anthropogenic factors and founder effects. Moderate genetic differentiation was observed among populations (Gst = 0.13) indicating the presence of a large number of common alleles resulting in a homogenisation effect. Clustering of individual trees by genetic similarity coefficients indicated that mainland trees were genetically closer than the trees on Likoma Island. Mantel’s test showed a weak positive insignificant correlation (Z = 0.12; P = 0.64) between genetic distance among populations and actual distance on the ground implying that geneflow was not directly influenced by isolation by distance. The results suggest that seed distribution and tree improvement should recognise the presence of ecotypes and conservation measures should protect all the populations due to existence of private alleles which are of adaptive importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinnifesi FK, Silesh G, Ajayi OC, Chirwa PW, Kwesiga FR, Harawa R (2008) Contribution of agroforestry research and development to livelihood of smallholder farmers in Southern Africa: 2 fruit, medicinal, fuelwood and fodder tree systems. Agric J 3(1):76–88

    Google Scholar 

  • Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans Biol Sci 353(1366):177–186

    Article  CAS  Google Scholar 

  • Assogbadjo AE, Kyndt T, Sinsin B, Gheysen G, Van Damme P (2006) Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa). Ann Bot 97:819–830

    Article  PubMed  CAS  Google Scholar 

  • Assogbadjo AE, Kyndt T, Chadare FJ, Sinsin B, Gheysen G, Eyog-Matig O, Van Damme P (2009) Genetic fingerprinting using AFLP cannot distinguish traditionally classified baobab morphotypes. Agrofor Syst 75:157–165

    Article  Google Scholar 

  • Avila-Díaz I, Oyama K (2007) Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). Am J Bot 94(2):184–193

    Article  PubMed  Google Scholar 

  • Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manag 247:98–106

    Article  Google Scholar 

  • Changadeya W (2009) Genetic morphological and socio-economic characterisation of Musa (Banana) cultivars growing in Malawi. Dissertation, University of Malawi, Limbe

    Google Scholar 

  • Changadeya W, Kaunda E, Ambali AJD (2012) Molecular characterisation of Musa L. cultivars cultivated in Malawi using microsatellite markers. Afr J Biotechnol 11(18):4140–4157

    CAS  Google Scholar 

  • Chirwa M, Chithila V, Kayambazinthu D, Dohse C (2006) Distribution and population structures of Adansonia digitata in Malawi. FRIM, Zomba

    Google Scholar 

  • Dawson IK, Lengkeek A, Weber JC, Jamnaclass R (2009) Managing genetic variation in tropical trees: linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods. Biodivers Conserv 18:969–986

    Article  Google Scholar 

  • Edkins MT, Kruger LM, Harris K, Midgley JJ (2007) Baobabs and elephants in Kruger National Park: nowhere to hide. Afr J Ecol. doi:10.1111/j.1365-2028.2007.00798.x

    Google Scholar 

  • Esselman EJ, Crawford DJ, Soren B, Stuessy TF, Anderson GJ, Silva MO (2000) RAPD marker diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae). Am J Bot 87(4):591–596

    Article  PubMed  CAS  Google Scholar 

  • Gawal NG, Jarret RL (1991) Cytoplasmic genetic diversity in banana and plantain. Euphytica 52:19–23

    Google Scholar 

  • Giang LH, Hong PN, Tuan MS, Harada K (2003) Genetic variation of Avicennia marina (Forsk) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellite and AFLP markers. Genes Genet Syst 78:399–407

    Article  CAS  Google Scholar 

  • Glaubitz JF, Moran GF (2000) Genetic tools: the use of biochemical and molecular markers. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. Principles and Practice. CSIRO Publishing, Wallingford

    Google Scholar 

  • Guy GL (1971) The baobabs: Adansonia spp. (Bombacaceae). J Bot Soc S Afr 57:31–37

    Google Scholar 

  • Hardcastle PD (1978) A preliminary silvicultural classification of Malawi. Forestry Research Institute of Malawi. Forestry Research Record No. 57

  • Heywood VH, Watson RT (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelly BA, Hardy OJ, Bouvet J (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Crow JK (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    Google Scholar 

  • Kyndt T, Assogbadjo AE, Hardy OJ, Kakaïa RG, Sinsin B, Van Damme P, Gheysen G (2009) Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa. Am J Bot 96(5):950–957

    Article  PubMed  CAS  Google Scholar 

  • Larsen AS, Vaillant A, Verhaegen D, Kjaer ED (2009) Eighteen SSR-primers for tetraploid Adansonia digitata and its relatives. Conserv Genet Resour. doi:10.1007/s12686-009-9075-y

    Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

  • Maghuly F, Pinsker W, Praznik W, Fluch S (2006) Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L) Karst]. For Ecol Manag 222:266–271

    Article  Google Scholar 

  • Mwase WF, Bjornstad A, Stedje B, Bokosi JM, Kwapata MB (2006) Genetic diversity of Uapaka kirkiana Muel. Arg. Populations as revealed by amplified fragment length polymorphism (AFLPs). Afr J Biotechnol 5(13):1205–1213

    CAS  Google Scholar 

  • Nassar JM, Hamrick JL, Fleming TH (2003) Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae). Am J Bot 90(11):1628–1637

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Google Scholar 

  • Nei M (1978) Estimates of a verage heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91(12):2013–2021

    Article  PubMed  Google Scholar 

  • Pocktsy JL, Lumaret R, Mayne D, Mohamed VA, Abutaba YIM, Sagna M, Raoseta S, Danthu P (2009) Chloroplast DNA phylogeography suggest a West African centre of origin for the baobab, Adansonia digitata L (Bombacoideae, Malvaceae). Mol Ecol 18:1707–1715

    Article  Google Scholar 

  • Promega (2000) Life science catalog. www.promega.com

  • Rholf JR (2001) NTSYpc Version 2.11c numerical taxonomy and multivariate analysis system, Exeter Software, New York

  • Sidibe M, Williams JT (2002) Baobab. Adansonia digitata. International Centre for Underutilised Crops, Southampton

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sreekumar VB, Renuka C (2006) Assessment of genetic diversity in Calamus thwaitesii BECC. (Arecaceae) using RAPD markers. Biochem Syst Ecol 34:397–405

    Article  CAS  Google Scholar 

  • Wickens GE (1982) The baobab: Africa’s upside-down tree. Kew Bull 37(2):173–209

    Article  Google Scholar 

  • Wilson RT (1988) Vital statistics of the baobab (Adansonia digitata). Afr J Ecol 26:197–206

    Article  Google Scholar 

  • Yeh FC (2000) Population genetics. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. Principles and Practice. CSIRO Publishing, Wallingford

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE Version 1.31, Microsoft window-based freeware for population genetics analysis. Quick User Guide, University of Alberta and Centre for International Forest Reserch, Alberta, Canada

  • Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The study was co-financed by Mzuzu University and Stellenbosch University. Special thanks go to Mr. Y. Kazembe and Miss E Aquaron of Molecular Biology and Ecology Research Unit (MBERU), Department of Biological Sciences, Chancellor College, University of Malawi for helping during the extraction of DNA. Mr. S. Kamowa of Mzuzu University is thanked for active participation in field work. Lastly, we thank Pretoria University for hosting the first author at the time of writing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Y. Munthali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munthali, C.R.Y., Chirwa, P.W., Changadeya, W.J. et al. Genetic differentiation and diversity of Adansonia digitata L (baobab) in Malawi using microsatellite markers. Agroforest Syst 87, 117–130 (2013). https://doi.org/10.1007/s10457-012-9528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9528-2

Keywords

Navigation