Skip to main content

Advertisement

Log in

Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

This study was designed to investigate how changes in O2 levels affected angiogenesis in vascular organ culture. Although hypoxia is a potent inducer of angiogenesis, aortic rings cultured in collagen paradoxically failed to produce an angiogenic response in 1–4 % O2. Additionally, aortic neovessels preformed in atmospheric O2 lost pericytes and regressed at a faster rate than control when exposed to hypoxia. Aortic explants remained viable in hypoxia and produced an angiogenic response when returned to atmospheric O2. Hypoxic aortic rings were unresponsive to VEGF, while increased oxygenation of the system dose-dependently enhanced VEGF-induced angiogenesis. Hypoxia-induced refractoriness to angiogenic stimulation was not restricted to the aorta because similar results were obtained with vena cava explants or isolated endothelial cells. Unlike endothelial cells, aorta-derived mural cells were unaffected by hypoxia. Hypoxia downregulated expression in aortic explants of key signaling molecules including VEGFR2, NRP1 and Prkc-beta while upregulating expression of VEGFR1. Medium conditioned by hypoxic cultures exhibited angiostatic and anti-VEGF activities likely mediated by sVEGFr1. Hypoxia reduced expression of VEGFR1 and VEGFR2 in endothelial cells while upregulating VEGFR1 in macrophages and VEGF in both macrophages and mural cells. Thus, changes in O2 levels profoundly affect the endothelial response to angiogenic stimuli. These results suggest that hypoxia-induced angiogenesis is fine-tuned by complex regulatory mechanisms involving not only production of angiogenic factors including VEGF but also differential regulation of VEGFR expression in different cell types and production of inhibitors of VEGF function such as sVEGFR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fisher SA, Burggren WW (2007) Role of hypoxia in the evolution and development of the cardiovascular system. Antioxid Redox Signal 9:1339–1352

    Article  CAS  PubMed  Google Scholar 

  2. Monahan-Earley R, Dvorak AM, Aird WC (2013) Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 11(Suppl 1):46–66

    Article  PubMed  Google Scholar 

  3. Scholander PF (1960) Oxygen transport through hemoglobin solutions. Science 131:585–590

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dor Y, Porat R, Keshet E (2001) Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol 280:C1367–C1374

    CAS  PubMed  Google Scholar 

  6. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imtiyaz HZ, Simon MC (2010) Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 345:105–120

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carreau A, Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? small molecules and hypoxia. J Cell Mol Med 15:1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simons M, Alitalo K, Annex BH, Augustin HG, Beam C et al (2015) State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association. Circ Res 116:e99–e132

    Article  CAS  PubMed  Google Scholar 

  10. Slevin M, Krupinski J, Badimon L (2009) Controlling the angiogenic switch in developing atherosclerotic plaques: possible targets for therapeutic intervention. J Angiogenes Res 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  CAS  PubMed  Google Scholar 

  12. Nicosia RF (2009) The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med 13:4113–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicosia RF, Zhu WH, Fogel E, Howson KM, Aplin AC (2005) A new ex vivo model to study venous angiogenesis and arterio-venous anastomosis formation. J Vasc Res 42:111–119

    Article  PubMed  Google Scholar 

  14. Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136

    Article  CAS  PubMed  Google Scholar 

  15. Aplin AC, Fogel E, Nicosia RF (2010) MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicosia RF, Villaschi S, Smith M (1994) Isolation and characterization of vasoformative endothelial cells from the rat aorta. In Vitro Cell Dev Biol Anim 30A:394–399

    Article  CAS  PubMed  Google Scholar 

  17. Villaschi S, Nicosia RF, Smith MR (1994) Isolation of a morphologically and functionally distinct smooth muscle cell type from the intimal aspect of the normal rat aorta: evidence for smooth muscle cell heterogeneity. In Vitro Cell Dev Biol Anim 30A:589–595

    Article  CAS  PubMed  Google Scholar 

  18. Nicosia RF, Villaschi S (1995) Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73:658–666

    CAS  PubMed  Google Scholar 

  19. Ligresti G, Aplin AC, Zorzi P, Morishita A, Nicosia RF (2011) Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 31:1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF (2006) Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 27:20–28

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  22. Hielscher A, Gerecht S (2015) Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic Biol Med 79:281–291

    Article  CAS  PubMed  Google Scholar 

  23. Salisbury D, Bronas U (2015) Reactive oxygen and nitrogen species: impact on endothelial dysfunction. Nurs Res 64:53–66

    Article  PubMed  Google Scholar 

  24. Rushworth GF, Megson IL (2014) Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 141:150–159

    Article  CAS  PubMed  Google Scholar 

  25. Nicosia RF, Nicosia SV, Smith M (1994) Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nicosia RF, Lin YJ, Hazelton D, Qian X (1997) Endogenous regulation of angiogenesis in the rat aorta model: role of vascular endothelial growth factor. Am J Pathol 151:1379–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD et al (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443:993–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Shi M, Xi Y, Gao L, Zhang G et al (2015) Recombinant human vascular endothelial growth factor receptor 1 effectively inhibits angiogenesis in vivo. Mol Med Rep 11:3432–3438

    CAS  PubMed  Google Scholar 

  29. Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC (2011) VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 22:2766–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuma K, Takahara N, Suzuma I, Isshiki K, Ueki K et al (2002) Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci USA 99:721–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marsch E, Sluimer JC, Daemen MJ (2013) Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol 24:393–400

    CAS  PubMed  Google Scholar 

  32. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  CAS  PubMed  Google Scholar 

  34. Kida Y, Tchao BN, Yamaguchi I (2014) Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 29:333–342

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greenhalgh SN, Conroy KP, Henderson NC (2015) Healing scars: targeting pericytes to treat fibrosis. QJM 108:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268

    Article  CAS  PubMed  Google Scholar 

  37. Kuffler DP (2010) Hyperbaric oxygen therapy: an overview. J Wound Care 19:77–79

    Article  CAS  PubMed  Google Scholar 

  38. Siegel ME, Giargiana FA Jr, Rhodes BA, Williams GM, Wagner HN Jr (1975) Perfusion of ischemic ulcers of the extremity: a prognostic indicator of healing. Arch Surg 110:265–268

    Article  CAS  PubMed  Google Scholar 

  39. Senger DR (2010) Vascular endothelial growth factor: much more than an angiogenesis factor. Mol Biol Cell 21:377–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    CAS  PubMed  Google Scholar 

  41. Horowitz JR, Rivard A, van der Zee R, Hariawala M, Sheriff DD et al (1997) Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension: evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol 17:2793–2800

    Article  CAS  PubMed  Google Scholar 

  42. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108(Pt 6):2369–2379

    CAS  PubMed  Google Scholar 

  43. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V et al (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329:630–632

    Article  CAS  PubMed  Google Scholar 

  44. Messmer-Blust A, An X, Li J (2009) Hypoxia-regulated angiogenic inhibitors. Trends Cardiovasc Med 19:252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  46. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D et al (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231:503–509

    Article  CAS  PubMed  Google Scholar 

  47. Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y et al (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418

    CAS  PubMed  Google Scholar 

  48. Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D et al (2002) Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol 22:901–906

    Article  CAS  PubMed  Google Scholar 

  49. Ulyatt C, Walker J, Ponnambalam S (2011) Hypoxia differentially regulates VEGFR1 and VEGFR2 levels and alters intracellular signaling and cell migration in endothelial cells. Biochem Biophys Res Commun 404:774–779

    Article  CAS  PubMed  Google Scholar 

  50. Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH (2009) Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 296:C1162–C1170

    Article  CAS  PubMed  Google Scholar 

  51. Munaut C, Lorquet S, Pequeux C, Blacher S, Berndt S et al (2008) Hypoxia is responsible for soluble vascular endothelial growth factor receptor-1 (VEGFR-1) but not for soluble endoglin induction in villous trophoblast. Hum Reprod 23:1407–1415

    Article  CAS  PubMed  Google Scholar 

  52. Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S et al (1999) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest 79:501–509

    CAS  PubMed  Google Scholar 

  53. Ito TK, Ishii G, Saito S, Yano K, Hoshino A et al (2009) Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood 113:2363–2369

    Article  CAS  PubMed  Google Scholar 

  54. Stapor P, Wang X, Goveia J, Moens S, Carmeliet P (2014) Angiogenesis revisited: role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 127:4331–4341

    Article  CAS  PubMed  Google Scholar 

  55. Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW (2000) Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood 96:2775–2783

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Merit Review Award from the United States (U.S.) Department of Veterans Affairs Biomedical Laboratory Research and Development Service. The contents do not represent the views of the U.S. Department of Veteran Affairs or the United States Government. In addition, we gratefully acknowledge the support of a grant-in-aid from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. Nicosia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

All animal procedures were performed with approval from the Veterans Administration Puget Sound Health Care System Institutional Animal Care and Use Committee and followed National Institutes of Health Guidelines. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aplin, A.C., Nicosia, R.F. Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor. Angiogenesis 19, 133–146 (2016). https://doi.org/10.1007/s10456-015-9493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9493-2

Keywords

Navigation