Skip to main content
Log in

Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular remodeling involves a highly coordinated break-down and build-up of the vascular basal lamina and inter-endothelial tight junction proteins. In light of the important role of matrix metalloproteinases (MMPs) in tissue remodeling, the goal of this study was to examine the role of MMP-9 in remodeling of cerebral blood vessels, both in hypoxia-induced angiogenesis and in the vascular pruning that accompanies the switch from hypoxia back to normoxia. In a chronic mild hypoxia model of cerebrovascular remodeling, gel zymography revealed that MMP-9 levels were increased, both during hypoxic-induced angiogenesis and in the post-hypoxic pruning response. Interestingly, compared to wild-type mice, MMP-9 KO mice showed no alteration in hypoxic-induced angiogenesis, but did show marked delay in post-hypoxic vascular pruning. In wild-type mice, vascular pruning was associated with fragmentation of vascular laminin and the tight junction protein claudin-5, while this process was markedly attenuated in MMP-9 KO mice. In vitro experiments showed that hypoxia stimulated MMP-9 expression in brain endothelial cells but not pericytes. These results show that while MMP-9 is not essential for hypoxic-induced cerebral angiogenesis, it plays an important role in post-hypoxic vascular pruning by degrading laminin and claudin-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LaManna JC, Chavez JC, Pichiule P (2004) Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol 207:3163–3169

    Article  CAS  PubMed  Google Scholar 

  2. LaManna JC, Vendel LM, Farrell RM (1992) Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol 72:2238–2243

    CAS  PubMed  Google Scholar 

  3. Harik N, Harik SI, Kuo N-T, Sakai K, Przybylski RJ, LaManna JC (1996) Time course and reversibility of the hypoxia-induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain Res 737:335–338

    Article  CAS  PubMed  Google Scholar 

  4. Eliceiri BP, Cheresh D (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  CAS  PubMed  Google Scholar 

  5. Grant DS, Kleinman HK (1997) Regulation of capillary formation by laminin and other components of the extracellular matrix. EXS 79:317–333

    CAS  PubMed  Google Scholar 

  6. Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen Z-L, Yao YMM, Norris EH, Kruyer A, Jno-Charles O, Akbarshakh A, Strickland S (2013) Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol 202:381–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrixmetalloproteinsases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  10. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2195

    Article  CAS  PubMed  Google Scholar 

  12. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo E (2001) effects of matrix metalloproteinase-9 gene knockout on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    CAS  PubMed  Google Scholar 

  13. Rosell A, Lo EH (2008) Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 8:82–89

    Article  CAS  PubMed  Google Scholar 

  14. Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA (2008) Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imgaing countered by impaired long-term recovery after stroke in rats. J Cereb Blood Flow Metab 28:431–438

    Article  CAS  PubMed  Google Scholar 

  15. Milner R, Campbell IL (2002) Developmental regulation of β1 integrins during angiogenesis in the central nervous system. Mol Cell Neurosci 20:616–626

    Article  CAS  PubMed  Google Scholar 

  16. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633

    Article  CAS  PubMed  Google Scholar 

  17. Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, Del Zoppo GJ (2007) Fibronectin-and Vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins α5β1 and αvβ5. J Immunol 178:8158–8167

    Article  CAS  PubMed  Google Scholar 

  18. Milner R, Hung S, Wang X, Berg G, Spatz M, del Zoppo G (2008) Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 39:191–197

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tigges U, Welser-Alves JV, Boroujerdi A, Milner R (2012) A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 84:74–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Boroujerdi A, Welser-Alves J, Tigges U, Milner R (2012) Chronic cerebral hypoxia promotes arteriogenic remodeling events that can be identified by reduced endoglin (CD105) expression and a switch in β1 integrins. J Cereb Blood Flow Metab 32:1820–1830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li L, Welser JV, Dore-Duffy P, Del Zoppo GJ, LaManna JC, Milner R (2010) In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the α6β4 integrin and dystroglycan. Glia 58:1157–1167

    PubMed Central  PubMed  Google Scholar 

  22. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neourosci 24:719–725

    Article  CAS  Google Scholar 

  23. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier; development, composition and regulation. Vasc Pharmacol 38:323–337

    Article  CAS  Google Scholar 

  24. Frankowski H, Gu YH, Heo JH, Milner R, del Zoppo G (2012) Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol 814:221–233

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Li L, Liu F, Welser-Alves JV, McCullough LD, Milner R (2012) Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol 233:283–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu F, Schafer DP, McCullough LD (2009) TTC, Fluro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94:262–268

    Article  CAS  PubMed  Google Scholar 

  29. Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, Coussens LM, Declerck YA (2005) The contribution of bome marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9-dependent. Cancer Res 65:3200–3208

    CAS  PubMed  Google Scholar 

  30. Nakamura T, Kuwai T, Kim JS, Fan D, Kim SJ, Fidler IJ (2007) Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia 9:979–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ohno-Matsui K, Uetama T, Yoshida T, Hayano M, Itoh T, Morita I, Mochizuki M (2003) Reduced retinal angiogenesis in MMP-2-deficient mice. Investig Ophthalmol Vis Sci 44:5370–5375

    Article  Google Scholar 

  32. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DMJ, Su H, Gannon J, MacGillvray C, Lee RT, Sinusas AJ, Spinale FG (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232–H239

    Article  CAS  PubMed  Google Scholar 

  33. Enenstein J, Waleh NS, Kramer RH (1992) Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 203:499–503

    Article  CAS  PubMed  Google Scholar 

  34. Merwin JR, Anderson JM, Kocher O, Van Itallie CM, Madri JA (1990) Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Phys 142:117–128

  35. Mosjsilovic SS, Santibanez JF (2015) Transforming growth factor beta differently regulates urokinase type plasminogen activator and matrix metalloproteinase-9 expression in mouse macrophages: analysis of intracellular signal transduction. Cell Biol Int. Epub 10435

  36. Roberts CJ, Birkenmeier TM, McQuillan JJ, Akiyama SK, Yamada SS, Chen WT, Yamada KM, McDonald JA (1988) Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem 263:4586–4592

    CAS  PubMed  Google Scholar 

  37. Ronaldson PT, Dermarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP (2009) Transforming growth factor-beta signaling alters substrate peremeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab 29:1084–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Welser-Alves J, Boroujerdi A, Tigges U, Wrabetz L, Feltri ML, Milner R (2013) Endothelial β4 integrin is predominantly expressed in arterioles, where it promotes vascular remodeling in hypoxic brain. Arterioscler Thromb Vasc Biol 33:943–953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Postdoctoral Fellowship Award from the American Heart Association (AB) and by the NIH RO1 Grant NS060770 (RM). This is manuscript number 27010 from The Scripps Research Institute.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All experiments performed in this study comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Milner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroujerdi, A., Welser-Alves, J.V. & Milner, R. Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5. Angiogenesis 18, 255–264 (2015). https://doi.org/10.1007/s10456-015-9464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9464-7

Keywords

Navigation