Skip to main content

Advertisement

Log in

miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is a crucial step of angiogenesis and it depends on the activation of the p38 MAP-kinase pathway downstream of VEGFR2. In this study, we investigated the role of microRNAs (miRNAs) in regulating these processes. We found that the VEGF-induced p38 activation and cell migration are modulated by overexpression of Argonaute 2, a key protein in the functioning of miRNAs. Thereafter, we found that miR-20a expression is increased by VEGF and that its ectopic expression inhibits VEGF-induced actin remodeling and cell migration. Moreover, the expression of miR-20a impairs the formation of branched capillaries in a tissue-engineered model of angiogenesis. In addition, the lentivirus-mediated expression of miR-20a precursor (pmiR-20a) is associated with a decrease in the VEGF-induced activation of p38. In contrast, these processes are increased by inhibiting miR-20a with a specific antagomir. Interestingly, miR-20a does not modulate VEGFR2 or p38 protein expression level. miR-20a does not affect either the expression of other known actors of the p38 MAP kinase pathway except MKK3. Indeed, by using quantitative PCR and Western Blot analysis, we found that pmiR-20a decreases the expression of MKK3 and we obtained evidence indicating that miR-20a specifically binds to the 3′UTR region of MKK3 mRNA. In accordance, the VEGF-induced activation of p38 and cell migration are impaired when the MKK3 expression is knocked down by siRNA. We conclude that miR-20a acts in a feedback loop to repress the expression of MKK3 and to negatively regulate the p38 pathway-mediated VEGF-induced endothelial cell migration and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  5. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  6. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39:212–220

    Article  PubMed  CAS  Google Scholar 

  7. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  PubMed  CAS  Google Scholar 

  8. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  9. Otrock ZK, Makarem JA, Shamseddine AI (2007) Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis 38:258–268

    Article  PubMed  CAS  Google Scholar 

  10. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  PubMed  CAS  Google Scholar 

  11. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  12. Yu J, Bian D, Mahanivong C, Cheng RK, Zhou W, Huang S (2004) p38 Mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J Biol Chem 279:50446–50454 (Epub 2004 Sep 14)

    Google Scholar 

  13. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275:10661–10672

    Article  PubMed  CAS  Google Scholar 

  14. Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities, J Biol Chem 279:39175–185 (Epub 2004 Jul 6)

    Google Scholar 

  15. Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    Article  PubMed  CAS  Google Scholar 

  16. Rousseau S, Dolado I, Beardmore V, Shpiro N, Marquez R, Nebreda AR, Arthur JS, Case LM, Tessier-Lavigne M, Gaestel M, Cuenda A, Cohen P (2006) CXCL12 and C5a trigger cell migration via a PAK1/2-p38alpha MAPK-MAPKAP-K2-HSP27 pathway. Cell Signal 18:1897–1905

    Article  PubMed  CAS  Google Scholar 

  17. Lamalice L, Houle F, Jourdan G, Huot J (2004) Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23:434–445

    Article  PubMed  CAS  Google Scholar 

  18. Cote MC, Lavoie JR, Houle F, Poirier A, Rousseau S, Huot J (2010) Regulation of vascular endothelial growth factor-induced endothelial cell migration by LIM kinase 1-mediated phosphorylation of annexin 1. J Biol Chem 285:8013–8021

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20:2768–2778

    Article  PubMed  CAS  Google Scholar 

  20. Masson-Gadais B, Houle F, Laferriere J, Huot J (2003) Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52

    Article  PubMed  CAS  Google Scholar 

  21. Lamalice L, Houle F, Huot J (2006) Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem 281:34009–34020

    Article  PubMed  CAS  Google Scholar 

  22. Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  PubMed  CAS  Google Scholar 

  23. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  24. Duval M, Bedard-Goulet S, Delisle C, Gratton JP (2003) Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278:20091–20097

    Article  PubMed  CAS  Google Scholar 

  25. Aslam MI, Taylor K, Pringle JH, Jameson JS (2009) MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 96:702–710

    Article  PubMed  CAS  Google Scholar 

  26. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  27. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  28. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  29. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  30. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  31. Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  PubMed  CAS  Google Scholar 

  32. Kwak PB, Iwasaki S, Tomari Y (2010) The microRNA pathway and cancer. Cancer Sci 101:2309–2315

    Article  PubMed  CAS  Google Scholar 

  33. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  34. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  35. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  PubMed  CAS  Google Scholar 

  36. Rudel S, Wang Y, Lenobel R, Korner R, Hsiao HH, Urlaub H, Patel D, Meister G (2010) Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res 39:2330–2343

    Article  PubMed  Google Scholar 

  37. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  PubMed  CAS  Google Scholar 

  38. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173

    Article  PubMed  CAS  Google Scholar 

  39. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101:59–68

    Article  PubMed  CAS  Google Scholar 

  40. Asai T, Suzuki Y, Matsushita S, Yonezawa S, Yokota J, Katanasaka Y, Ishida T, Dewa T, Kiwada H, Nango M, Oku N (2008) Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown. Biochem Biophys Res Commun 368:243–248

    Article  PubMed  CAS  Google Scholar 

  41. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280:9330–9335

    Article  PubMed  CAS  Google Scholar 

  42. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    Article  PubMed  CAS  Google Scholar 

  43. Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392

    Article  PubMed  CAS  Google Scholar 

  44. Gibot L, Galbraith T, Huot J, Auger FA (2010) A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute. Tissue Eng Part A 16:3199–3206

    Article  PubMed  CAS  Google Scholar 

  45. Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 105:14082–14087

    Article  PubMed  CAS  Google Scholar 

  46. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    Article  PubMed  CAS  Google Scholar 

  47. Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, Hofmann WK, Zeiher AM, Dimmeler S (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115:4944–4950

    Article  PubMed  CAS  Google Scholar 

  48. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  PubMed  CAS  Google Scholar 

  49. Gee E, Milkiewicz M, Haas TL (2010) p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol 222:120–126

    Article  PubMed  CAS  Google Scholar 

  50. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  PubMed  CAS  Google Scholar 

  51. Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 104:1184–1191

    Article  PubMed  CAS  Google Scholar 

  52. Korpelainen EI, Karkkainen M, Gunji Y, Vikkula M, Alitalo K (1999) Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18:1–8

    Article  PubMed  CAS  Google Scholar 

  53. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732

    Article  PubMed  CAS  Google Scholar 

  54. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  55. Woods K, Thomson JM, Hammond SM (2007) Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282:2130–2134

    Article  PubMed  CAS  Google Scholar 

  56. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    Article  PubMed  CAS  Google Scholar 

  57. Zeng Y, Sankala H, Zhang X, Graves PR (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413:429–436

    Article  PubMed  CAS  Google Scholar 

  58. Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333:238–250

    Article  PubMed  CAS  Google Scholar 

  59. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  PubMed  CAS  Google Scholar 

  60. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1:e116

    Article  PubMed  Google Scholar 

  61. Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kuhnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, Grillari J (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296

    Article  PubMed  CAS  Google Scholar 

  62. Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 68:5540–5545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Karim Ghani and Dr. Manuel Caruso for their help in preparing the lentiviral vectors. They also thank Drs. Sébastien Bonnet, Jacques Landry, Josée N Lavoie, Marc-Etienne Huot, and Gunter Meister for providing some of the reagents used in this study. This study was supported by grants to JH from the Canadian Institutes for Health Research (CIHR), The Heart Stroke Foundation of Canada (HSFC) and The Natural Sciences and Engineering Research Council of Canada (NSERC) and by a CIHR grant to MJS. MJS is a Canadian Institutes of Health Research New Investigator. ALP received a studentship from CRCHUQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Huot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pin, AL., Houle, F., Guillonneau, M. et al. miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 15, 593–608 (2012). https://doi.org/10.1007/s10456-012-9283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9283-z

Keywords

Navigation