Skip to main content

Advertisement

Log in

Preliminary survey of indoor and outdoor airborne microfungi at coastal buildings in Egypt

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Forty six species and two sterile fungi and yeast species were isolated from samples collected both indoors and outdoors of coastal buildings located in an Egyptian coastal city. Twenty flats from ten buildings were investigated; children living in these buildings have been reported to suffer from respiratory illnesses. Samples were taken using a New Brunswick sampler (model STA-101) operating for 3.0 min at a flow rate of 6.0 l/min. Most of the species isolated have been associated with symptoms of respiratory allergies. Indoors the total culturable fungal count was 1548 CFU/m3; outdoors, it was 1452 CFU/m3. Indoor values of culturable fungal count, total spores count and ergosterol content ranged from 52 to 124 CFU/m3, 100 to 400 spore/m3 and 5 to 27.7 mg/m3, respectively, whereas outdoor levels typically varied between 25 and 222 CFU/m3, 110 and 900 spore/m3 and 3.3 and 67.2 mg/m3, respectively. The maxima for these parameters were detected indoors in house no. 6 and outdoors, outside of house no. 7. The most abundant species were primarily mitosporic (2832 CFU/m3). The most frequent species in both the indoor and outdoor samples were Cladosporium cladosporioides followed by Alternaria alternata and Penicillium chrysogenum,with inside:outside ratios of 1.4, 1.8 and 1.9, respectively. The patterns of fungal abundance were influenced to some extent by changes in the relative humidity and temperature. Other factors, such as type of culture media, rate of sedimentation, size, survival rates of spore and species competition,also affected fungal counts and should be taken into consideration during any analysis of bioaerosol data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Subai, A. A. T. (2002). Air-borne fungi at Doha, Qatar. Aerobiologia, 18, 175–183.

    Article  Google Scholar 

  • Al-Suwaine, A. S., Hasnain, S. M., & Bahkali, A. H. (1999). Viable airborne fungi in Riyadh, Saudi Arabia. Aerobiologia, 15, 121–130.

    Article  Google Scholar 

  • Andersen, B., & Nissen, A. T. (2000). Evaluation of media for detection of Stachybotrys and Chaetomium species associated with water-damaged buildings. International Biodeterioration and Biodegradation, 46, 111–116.

    Article  Google Scholar 

  • Anderson, K., Morris, G., & Kennedy, H. (1996). Aspergillosis in immunocompromised paediatric patients: Associations with building hygiene, design, and indoor air. Throax, 51, 256–261.

    CAS  Google Scholar 

  • Billups, R. A., Tilton, K. S., & Warden, P. S. (1999). Identification of Stachybotrys chartarum utilizing various media and two temperature settings. In: First NSF International Conference on Indoor Air Health (pp. 166–174), Denver, Colo.

  • Bjurman, J. (1994). Ergosterol as an indicator of mould growth on wood in relation to culture age, humidity stress and nutrient level. International Biodeterioration and Biodegradation, 33, 355–368.

    Article  CAS  Google Scholar 

  • Bogacka, E. (1997). Sick building syndrome. Mikologia Lekarska, 4, 233–237.

    Google Scholar 

  • Botzenhart, K., Altenhoff, K., & Leithold, T. H. (1984). Molds in the air of greenhouse homes. In B. Seiferrt, H. Esdorn, M. Fischer, H. Ruden, & J. Wegner (Eds.), Indoor air sensitivity and hyperactivity, reactions to sick buildings (Vol. 84, pp. 277–82). Stockholm, Sweden: Swedish Council for Building Research.

    Google Scholar 

  • Burge, H. (1990). Bioaerosols: prevalence and health effects in the indoor environment. The Journal of Allergy and Clinical Immunology, 86, 687–701.

    Article  CAS  Google Scholar 

  • Burhan, E. N., & Asan, A. (2001). Airborne fungi in vegetable growing areas of Edirne, Turkey. Aerobiologia, 17, 69–75.

    Article  Google Scholar 

  • Chatigny, M. A., Dimmick, R. L., & Harrington, J. B. (1979). Aerobiology: The ecological systems approach. Dowden, Hutchinson and Ross, Stroudsberg, Pa. US/IBP Synthesis Series, 10, 111–150.

  • Cooley, J. D., Wong, W. C., Jumper, C. A., & Straus, D. C. (1998). Correlation between the prevalence of certain fungi and sick building syndrome. Occupational and Environmental Medicine, 55, 579–584.

    Google Scholar 

  • Cosentino S., Pisano P. L., Fadda M. E., & Palmas, F. (1990). Pollen and mold allergy: Aerobiologic survey in the atmosphere of Cagliari, Italy 1986–1988. Annals of Allergy, 65, 393.

  • Cox, C. S., & Wathes C. M. (1995). Bioaerosols handbook. New York: Lewis Publishers.

    Google Scholar 

  • Cuijpers, C. E. J., Swaen, G. M. H., Wesseling, G., Sturmans, F., & Wouters, E. F. M. (1995). Adverse effects of the indoor environment on respiratory health in primary school children. Environmental Research, 68, 11–23.

    Article  CAS  Google Scholar 

  • Dales, R. E., Burnett, R., & Zwanenburg, H. (1991). Adverse health effects among adults exposed to home dampness and molds. The American Review of Respiratory Disease, 143, 505–509.

    CAS  Google Scholar 

  • DeKoster, J. A., & Thorne, P. S. (1995). Bioaerosol concentrations in noncomplaint, complaint, and intervention homes in the midwest. American Industrial Hygiene Association Journal, 56, 573–580.

    Google Scholar 

  • Fanga, Z., Ouyanga, Z., Hub, L., Wanga, X., Zhenga, H., & Lina, X. (2005). Culturable airborne fungi in outdoor environments in Beijing, China. Science of the Total Environment, 350, 47–58.

    Google Scholar 

  • Fung, F., Clark, R., & Williams, S. (1998). Stachybotrys, a mycotoxinproducing fungus of increasing toxicologic importance. Clinical Toxicology, 36, 79–86.

    Article  CAS  Google Scholar 

  • Flannigan, B. (1992). Indoor microbiological pollutants-sources, species, characterisation and evaluation. In H. Knoppel, & P. Wolkoff (Eds.), Chemical, microbiological, health and comfort aspects of indoor air␣quality gate of the art in SBS (pp. 733–798). Dordrecht: Kluwer.

    Google Scholar 

  • Flannigan, B. (1997). Air sampling for fungi in indoor environments. Journal of Aerosol Science, 28, 381–392

    Article  CAS  Google Scholar 

  • Flannigan, B., & Hunter, C. A. (1988). Factors affecting airborne moulds in domestic dwellings. In: R. Perry, & P. W. Kirk (Eds). Indoor and ambient air quality selper (pp. 461–468). London.

  • Flannigan, B., & Miller, J. D. (1994). Health implications of fungi in indoor environments—an overview. In R.␣A. Samson, B. Flannigan, M. E. Flannigan, A. P. Verhoeff, O. C. G. Adan, & E. S. Hoekstra (Eds.), Health implications of fungi in indoor environments (pp. l–28). Amsterdam: Elsevier.

    Google Scholar 

  • Flannigan, B., McCabe, E. M., & McGarry, F. (1991). Allergic and toxigenic micro-organisms in houses. Journal of Applied Bacteriology Symposium Supplement, 70, 61S–73S.

    Google Scholar 

  • Flannigan, B., McCabe, E. M., Jupe, S. V., & Jeffrey, I. G. (1993) Mycological and acaralogical investigation of complaint and non-complaint houses in Scotland. In Indoor Air ‘93, Proc 6th Int. Conf on Indoor Air Quality and Climate Indoor Air ‘93 (pp. 143–148). Helsinki.

  • Flannigan, B., McCabe E. M., & Jupe, S. V. (1996). Quantification of air- and dust-borne deteriogenic microorganisms in homes. In W. Sard (Ed.), Proc. 10th Biodeterioration and Biodegradation Symp (pp.␣377–384). Dechema, Frankfurt am Main.

  • Fradkin, A., Tobin, R. S., Tarlo, S. M., Tucic-Poretta, M., & Mallock, D. (1987). Species identification of airborne molds and its significance for the detection of indoor pollution. Japca, 35, 51–53.

    Google Scholar 

  • Garrison, R. A., Robertson, L. D., Koehn, R. D., & Wynn, S. R. (1993). Effect of heating-ventilation-air conditioning system sanitation on airborne fungal populations in residential environments. Annals of Allergy, 71, 548–556.

    CAS  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1993). Ergosterol-to- biomass conversion factors for aquatic hyphomycetes. Applied Environmental Microbiology, 59, 502–507.

    CAS  Google Scholar 

  • Gniadek, A, Macura, A. B., Oksiejczuk, E., Krajewska-Kulak, E., & Lukaszuk, C. (2005). Fungi in the air of selected social welfare homes in the Malopolskie and Podlaskie provinces—a comparative study. International Biodeterioration and Biodegradation, 55, 85–91.

    Article  Google Scholar 

  • Godish, T. (1995). Sick buildings: Definition, diagnosis and mitigation. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Grant, C., Hunter, C. A., Flannigan, B., & Bravery, A. F. (1989). Water activity requirements of moulds isolated from domestic dwellings. International Biodeterioration and Biodegradation, 25, 259–284.

    Article  Google Scholar 

  • Gutarowska, B. (1999). Ergosterol as an indicator of degree of mould’s contamination of plant materials. PhD thesis, Technical University, lrodrz, Poland.

  • Gutarowska, B., & Zakowska, Z. (2002). Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination. International Biodeterioration and Biodegradation, 49, 299–305.

    Article  CAS  Google Scholar 

  • Halwagy, M. (1989). Seasonal airspora at three sites in Kuwait 1977–1982. Mycological Research, 93, 208.

    Google Scholar 

  • Hargreaves, M, Parappukkaran, S, Morawska, L, Hitchins, J, He, C, & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. The Science of the Total Environment, 312, 89–101.

    Article  CAS  Google Scholar 

  • Henríquez, V. I., Villegas, G. R., & Nolla, J. M. R. (2001). Airborne fungi monitoring in Santiago. Chile Aerobiologia, 17, 137–142.

    Article  Google Scholar 

  • Herbarth, O., Schlink, U., Muller, A., & Richter, M. (2003). Spatiotemporal distribution of airborne mould spores in apartments. Mycology Research, 107, 1361–1371.

    Article  Google Scholar 

  • Hirsh, S. R., & Josman, J. A. (1976). A one year survey of mold growth inside twelve homes. Annals of Allergy, 36, 30–38.

    Google Scholar 

  • Horner, W. E., Helbling, A., Salvaggio, J. E., & Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8, 161–179.

    CAS  Google Scholar 

  • Howard, D. H., & Howard, L. F. (1983). Fungi pathogenic for humans and animals. New York: Marcel Dekker.

    Google Scholar 

  • Hu, F. B., Persky, V., Flay, B. R., & Richardson, J. (1997). An epidemiological study of asthma prevalence and related factors among young adult. British Medical Journal, 34, 67–76.

    CAS  Google Scholar 

  • Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: The air spora of domestic dwellings. International Biodeterioration, 24, 81–101.

    Article  Google Scholar 

  • Jensen, P. A., & Schafer, M. P. (1998). Sampling and characterization of bioaerosols. In NIOSH manual of analytical methods. Method 0800, Issue 1. pp. 82–112.

  • Kalogerakisa, N., Paschalia, D., Lekaditisa, V., Pantidoua, A., Eleftheriadisb, K., & Lazaridisc, M. (2005). Indoor air quality—bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 36, 751–761.

    Google Scholar 

  • Koch, A., Heilemann, K. J., Bischof, W., Heinrich, J., &␣Wichmann, H. E. (2000). Indoor viable mold spores—a comparison between two cities, Erfurt (eastern Germany) and Hamburg (western Germany). Allergy, 55, 176–180.

    Article  CAS  Google Scholar 

  • Kowalski, W., & Bahnfleth, W. P. (1998). Airborne respiratory diseases and technologies for control of microbes. HPAC 70.

  • Kozak, P. P., Gallup, J., Cummins, L.H., & Gillman, S. A. (1979). Factors of importance in determining the prevalence of indoor molds. Annals of Allergy, 43, 88–94.

    CAS  Google Scholar 

  • Lacap, D. C., Liew, E. C. Y., & Hyde K. D. (2003). An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Diversity, 12, 53–66.

    Google Scholar 

  • Lara, T. J. M., Tessier, J. F., & Lafont-Grellety, J. (1990). Indoor moulds in asthmatic patients homes. Aerobiologia, 6, 98.

    Article  Google Scholar 

  • Lehtonen, M., Reponen, T., & Nevalainen, A. (1993). Everyday activities and variation of fungal spore concentrations in indoor air. International Biodeterioration and Biodegradation, 31, 25–39.

    Article  Google Scholar 

  • Lundqvist, G. R., Aalykke, C., & Bonde G. J. (1990). Evaluation of children as sources of bioaerosols in a climate chamber study. Environment International, 16, 213–218.

    Article  Google Scholar 

  • Macura, A. B., & Gniadek, A. (2000). Fungi present in the indoor environment of a social welfare home. Preliminary study. Mikologia Lekarska, 7, 13–17.

    Google Scholar 

  • Magan, N. (1993). Early detection of mould growth in stored grain. Aspects of Applied Biology, 36, 417–426.

    Google Scholar 

  • Matcham, E., Jordan, B. R., & Wood, D. A. (1985). Estimation of fungal biomass in a solid substrate by three independent methods. Applied Microbiology and Biotechnology, 21, 108–112.

    Article  CAS  Google Scholar 

  • Medrela-Kuder, E. (2003). Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Cracow. International Biodeterioration and Biodegradation, 52, 203–205.

    Article  Google Scholar 

  • Mille-Lindblom, C., von Wachenfeldt, E., & Tranvik, L. J. (2004). Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. Journal of Microbiological Methods, 59, 253–262.

    Article  CAS  Google Scholar 

  • Muilins, J., Harvey, R., & Seaton, A. (1976). Sources and incidence of airborne Aspergillus fumigatus (Fres). Clinical Allergy, 6, 209–217.

    Article  Google Scholar 

  • Nielsen, K. F., Holm, G., Uttrup, L. P., & Nielsen, P. A. (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration and Biodegradation, 54, 325–336.

    Google Scholar 

  • Nilsson, A., Kihlstrom, E., Lagesson, V., Wessen, B., Szponar, B., Larsson, L., & Tagesson C. (2004). Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air, 14, 74–82.

    Article  CAS  Google Scholar 

  • Nikulin, M., Pasanen, A. L., Berg, S., & Hintikka, E. L. (1994). Stachybotrys atra growth and toxin production in some building materials and fodder under different relative humidity. Applied and Environmental Microbiology, 60, 3421–3424.

    CAS  Google Scholar 

  • Palska, St D., Harmata, K., Kasprzyk, I., Myszkowska, D., & Stach, A. (1999). Occurrence of airborne Cladosporium and Alternaria spores in Southern and Central Poland in 1995–1996. Aerobiologia, 15, 39–47.

    Article  Google Scholar 

  • Pasanen, A-L., Kalliokoski, P., Pasanen, P., Salmi, T., & Tossavainen, A. (1989). Fungi carried from farmer’s work into farm homes. American Industrial Hygiene Association Journal, 50, 631–633.

    CAS  Google Scholar 

  • Pasanen, A-L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment, 25A, 459–462.

    Google Scholar 

  • Pasanen, A-L., Heinonen-Tanski, H., Kalliokoski, P., & Jantunen, M. J. (1992). Fungal micro-colonies on indoor surfaces-an explanation for the base level fungal spore counts in indoor air. Atmospheric Environment, 26B, 117–120.

    Google Scholar 

  • Pasanen, A., Yli-Pietila, K., Pasanen, P., Kalliokoski, P., & Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials. Applied and Environmental Microbiology, 65, 138–142.

    CAS  Google Scholar 

  • Pei-Chih, W., Huey-Jenu, S., & Chia-Yin, L. (2000). Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of the Total Environment, 253, 111–118.

    Article  CAS  Google Scholar 

  • Picco, A. M., & Rodol, M. (2000). Airborne fungi as biocontaminants at two Milan underground station. International Biodeterioration and Biodegradation, 45, 43–47.

    Article  Google Scholar 

  • Pope, A. M., Patterson, R., & Burge, H. (1993). Indoor Allergens. Washington D.C.: National Academy Press.

    Google Scholar 

  • Ren, P., Jankun, T. M., Belanger, K., Bracken, M. B., & Leaderer, B. P. (2001). The relation between fungal propagules in indoor air and home characteristics. Allergy, 56, 419–424.

    Article  CAS  Google Scholar 

  • Reponen, T., Nevalainen, A., Jantunen, M., Pellikka, M., & Kalliokoski, P. (1992). Normal range criteria for indoor air bacteria and fungal spores in a subarctic climate. Indoor Air, 2, 26–31.

    Article  Google Scholar 

  • Ross, M. A., Curtis, L., Scheff, P. A., Hryhorczuk, D. O., Ramakrishnan, V., Wadden, R. A., & Persky, V. W. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55, 705–711.

    Article  CAS  Google Scholar 

  • Samson, R. A. (1994). Health implications of fungi in indoor environments. Amsterdam: Elsevier:

    Google Scholar 

  • Samson, R. A., Flannigan, B., Flannigan, M. E., Verhoe, A. P., Adan, O. C. G., & Hoekstra, E. S. (1994). Recommendations. In R. A. Samson, B. Flannigan, M. E. Flannigan, A. P. Verhoe, O. C. G. Adan, & E. S. Hoekstra (Eds.), Health implications of fungi in indoor environments (pp. 531–538). Amsterdam: Elsevier.

    Google Scholar 

  • Saraf, A., Larsson, L., Burge, H., & Milton, D. (1997). Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by Limulus amebocyte lysate assay. Applied and Environmental Microbiology, 63, 2554–2559.

    CAS  Google Scholar 

  • Schnpurer, J. (1991). Distribution of fungal biomass among fine bran, coarse bran, and gour from wheat stored at four deferent moisture levels. Cereal Chemistry, 68, 434–437.

    Google Scholar 

  • Seitz, L. M., Sauer, D. B., Burroughs, R., Mohr, H. E., & Hubbard, J. D. (1979). Ergosterol as a measure of fungal growth. Phytopathology, 69, 1202–1203.

    CAS  Google Scholar 

  • Tan, T. K., & Leong, W. F. (1989). Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Canadian Journal of Botany, 67, 2686–2691.

    Article  Google Scholar 

  • Verhoeff, A. P., Van Wijnen, J. H., Brunekreef, B., Fischer, P., Van Reenenhoekstra, E. S., & Samson, R. A. (1992). The presence of viable mold propagules in indoor air in relation to home dampness and outdoor air. Allergy, 47, 83–91.

    CAS  Google Scholar 

  • von Arx, J. A., Guarro, J., & Figuera, M. J. (1986). The ascomycete genus Chaetomium. Berlin: J Cramer.

    Google Scholar 

  • Woods, J. E., Grimsrud, D. T., & Boschi, N. (1997). Healthy Buildings/IAQ ‘97. Washington, D.C.: ASHRAE.

    Google Scholar 

  • World Health Organization (2000). Guidelines for concentration and exposure-response measurements of fine and ultra fine particulate matter for use in epidemiological studies. Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgements

The author is most indebted to prof. S.M. El-dohlob for reviewing the manuscript. Appreciation is also expressed to Mansoura University for facilitating lab and field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EL-Sayed M. EL-Morsy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

EL-Morsy, ES.M. Preliminary survey of indoor and outdoor airborne microfungi at coastal buildings in Egypt. Aerobiologia 22, 197–210 (2006). https://doi.org/10.1007/s10453-006-9032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-006-9032-0

Keywords

Navigation