Skip to main content
Log in

Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The resting stages of freshwater zooplankton constitute a special mechanism for passive dispersal, often displaying a variety of adaptations so as to ease transport. In floodplain systems, macrophytes are one of the most representative biotic groups showing interactions with the zooplankton community. The annual fluctuations in the hydrometric level of the Paraná River favour the displacement of this aquatic vegetation in floodplain environments. This paper hypothesizes that the roots and submerged portions of different macrophytes contain zooplankton resting stages which are able to hatch when environmental conditions are favourable. In turn, this contributes to the dispersal of zooplankton by plants when they are displaced by the flood pulse. Six macrophyte species were sampled (Eichhornia crassipes, Azolla filiculoides, Limnobium spongia, Pistia stratiotes, Eichhornia azurea and Nymphoides indica) from lakes within the Paraná River floodplain. Roots and submerged portions of vegetation were stored (90 days) at 4 °C then incubated at 25 °C for 90 days. Hatchling emergence was recorded at 2-day intervals during this period. In total, 70 zooplankton taxa were recorded in all macrophyte samples; rotifers were the most representative group (69%) followed by cladocerans (28%) and copepods (3%). The roots and submerged parts of aquatic vegetation house viable zooplankton resting stages. This phenomenon allows the dispersal of resting stages and therefore colonization of new habitats during the displacement of macrophyte species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alekseev VR (2002) Copepoda. In: Fernando CH (ed) A guide to tropical freshwater zooplankton. Backhugs Publishers, Leiden, pp 123–188

    Google Scholar 

  • Battauz YS, José de Paggi SB, Paggi JC (2014) Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). Int Rev Hydrobiol 99:277–286

    Article  Google Scholar 

  • Battauz YS, José de Paggi SB, Paggi JC (2015) Endozoochory by an ilyophagous fish in the Paraná River floodplain: a window for zooplankton dispersal. Hydrobiologia 755 (1):161–171

    Article  CAS  Google Scholar 

  • Battistoni P (1995) Copepoda. In: Lopretto E, Tell G (eds) Ecosistemas de aguas continentales. Metodologías para su estudio. Ediciones Sur, La Plata, pp 953–971

    Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796

    Article  Google Scholar 

  • Bonetto A (1986) The Paraná River system. In: Davies BR, Walker KF (eds) The ecology of river systems. Dr W. Junk Publishers, Dordrecht, pp 541–598

    Chapter  Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Article  Google Scholar 

  • Burkart A (1957) Ojeada sinóptica sobre la vegetación del Delta del Río Paraná. Darwiniana 11:457–561

    Google Scholar 

  • Burks RL, Mulderij G, Gross E, Jones I, Jacobsen L, Jeppesen E, Van Donk E (2006) Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In: Robbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity conservation, and restoration. Springer, Heidelberg, pp 37–59

    Chapter  Google Scholar 

  • Cáceres CE (1998) Interspecific variation in the abundance, production and emergence of Daphnia diapausing eggs. Ecology 79:1699–1710

    Article  Google Scholar 

  • Carlton JT (1992) Dispersal of living organisms into aquatic ecosystems as mediated by aquaculture and fisheries activities. In: Rosenfield A, Mann R (eds) Dispersal of living organisms into aquatic ecosystems. Maryland Sea Grant Publication, College Park, pp 13–45

    Google Scholar 

  • De Stasio BT (1989) The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70:1377–1389

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Léveque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny ML, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182

    Article  PubMed  Google Scholar 

  • Duggan IC, Green JD, Shiel RJ (2002) Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Arch Hydrobiol 153:409–420

    Article  Google Scholar 

  • Fernandez OA, Sutton DL, Lallana VH, Sabbatini MR, Irigoyen J (1990) Aquatic weed problems and management in South and Central America. In: Pieterse AH, Murphy KJ (eds) Aquatic weeds. The ecology and management of nuisance aquatic vegetation. Oxford Science Publications, New York, pp 406–425

    Google Scholar 

  • Fryer G (1972) Observations on the ephippia of certain macrothricid cladocerans. Zool J Linn Soc 51:79–96

    Article  Google Scholar 

  • Garcíar-Roger E (2006) Análisis demográfico de bancos de huevos diapáusicos de rotíferos. Tesis Doctoral. Universitat de València. Facultat de Ciències Biològiques Institut Cavanilles de Biodiversitat i Biologia Evolutiva

  • García-Roger EM, Armengol X, Carmona MJ, Serra M (2008) Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: an ex situ sediment incubation approach. Fundam Appl Limnol 173:79–88

    Article  Google Scholar 

  • Gazulha V, Montú M, Motta-Marques DML, Bonecker CC (2011) Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in southern Brazil. Braz Arch Biol Technol 54:74–754

    Article  Google Scholar 

  • Gonzáles AE (2007) Influencia de Utricularia foliosa sobre la diversidad zooplanctónica en las dimensiones longitudinal y temporal de la Quebrada Yahuarcaca (Amazonia colombiana). Trabajo de grado, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

  • Hagiwara A, Hino A (1989a) Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186:415–421

    Article  Google Scholar 

  • Hagiwara A, Hino A (1989b) Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186(187):415–421

    Article  Google Scholar 

  • Hairston NG Jr, Cáceres CA (1996) Distribution of crustacean diapause: micro and macroevolutionary pattern and process. Hydrobiologia 320:27–44

    Article  Google Scholar 

  • Hamilton S, Sippel S, Lewis WM, Saunders JJ (1990) Zooplankton abundance and evidence for its reduction by macrophyte mats in two Orinoco floodplain lakes. J Plankton Res 12:345–363

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia. IOP PublishingWeb. http://palaeo-electronica.org/2001_1/past/past.pdf. Accessed 4 June 2016

  • Havel JE, Shurin JB (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49:1229–1238

    Article  Google Scholar 

  • Havel JE, Stelzleni-Schwent J (2000) Zooplankton community structure: the role of dispersal. Int Ver Theor Angew Limnol 27:3264–3268

    Google Scholar 

  • Havel JE, Eisenbacher ME, Black AA (2000) Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquat Ecol 34:63–76

    Article  Google Scholar 

  • Inger D, Deluque J, Reyes S, Sierra T (2004) Composición de la comunidad de macroinvertebrados acuáticos asociados a las macrófitas de la Ciénaga del cerro San Antonio. VI Seminario Colombiano de Limnología, Montería

    Google Scholar 

  • Jeppesen E, Søndergaard MA, Søndergaard MO, Christoffersen K (1998) The structuring role of submerged macrophytes in lakes. Springer, New York

    Book  Google Scholar 

  • Kořínek V (2002) Cladocera. In: Fernando CH (ed) A guide to tropical freshwater zooplankton. Backhuys Publishers, Leiden, pp 69–122

    Google Scholar 

  • Korovchinsky NM (1992) Sididae & holopediidae (Crustacea: Daphniiformes) guides to the identification of the microinvertebrates of the continental waters of the world. Academic Publishing, Amsterdam, p 82

    Google Scholar 

  • Koste W (1978) Die Rädertiere Mitteleuropas. Borntraeger, Berlin, pp 1–82

    Google Scholar 

  • Kuczyńska-Kippen N, Joniak T (2015) Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774:39–51

    Article  Google Scholar 

  • Lallana VH (1990) Dispersal units in aquatic environments of the middle Paraná River and its tributary, the Saladillo River. In: Proceedings EWRS 8th symposium on aquatic weeds, pp 151–159

  • Lodge DM (1991) Herbivory on freshwater macrophytes. Aquat Bot 41:195–224

    Article  Google Scholar 

  • Maguire B Jr (1963) The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecol Monogr 33:161–185

    Article  Google Scholar 

  • Magurran A (1988) Ecological biodiversity and its measurement. Princeton University Press, Nueva York

    Book  Google Scholar 

  • Michels E, Cottenie K, Neys I, De Gelas K, Coppin P, De Meester I (2001) Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Mol Ecol 10:1929–1938

    Article  CAS  PubMed  Google Scholar 

  • Neiff JJ (1997) Aspectos conceptuales para la evaluación ambiental de tierras húmedas continentales de América del Sur. Anais do VIII Seminario Regional de Ecología, vol VIII, Programa de Pós-Graduação em Ecologia e Recursos Naturais, UFSCar, São Carlos, Brasil

  • Neiff J, Mendiondo E, Depettris C (2000) ENSO floods on river ecosystems: catastrophes or myths? In: Toenmsnann F, Koch M (eds) River flood defence, H-Verlag, kassel reports of hydraulic engineering No. 9/2000 Verlag, Kassel, vol I, Section F: flood risk, floodplain and floodplain management, pp 141–152

  • Poi de Neiff A (1977) Estructura de la fauna asociada a tres hidrófitos flotantes en ambientes lemníticos del nordeste argentino. Comunicaciones Científicas del CECOAL 6:1–16

    Google Scholar 

  • Poi de Neiff A, Neiff JJ (2006) Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del Río Paraná. Interciencia 31:220–225

    Google Scholar 

  • Proctor VW, Malone C (1965) Further evidence of the passive dispersal of small aquatic organisms via the intestinal tracts of birds. Ecology 46:728–729

    Article  Google Scholar 

  • Rennie MD, Jackson LJ (2005) The influence of habitat complexity on littoral invertebrate distributions: Patterns differ in shallow prairie lakes with and without fish. Can Fish Aquat Sci 62:2088–2099

    Article  CAS  Google Scholar 

  • Ricci C (1987) Ecology of bdelloids: how to be successful. Hydrobiologia 147:117–127

    Article  Google Scholar 

  • Sabattini RF, Lallana VH (2007) Aquatic Macrophytes. In: (Iriondo M, Paggi JC, Parma J (eds) The Middle Paraná River: limnology of a subtropical wetland. Springer, Berlin, pp 205–226

  • Sabattini RA, Lallana VH, Marta MC (1983) Inventario y biomasa de plantas acuáticas en un tramo del valle aluvial del Río Paraná medio. Revista de La Asoc Cienc Nat Litoral 14:179–191

    Google Scholar 

  • Santangelo JM, Lopes PM, Nascimento MO, Fernandes APC, Bartole S, Figueiredo-Barros MP, Leal JJF, Esteves FA, Farjalla VF, Bonecker CC, Bozelli RL (2015) Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758:183–195

    Article  Google Scholar 

  • Segers H (1995) Rotifera. In: Dumont HJ (ed) Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Publishers, Leiden, pp 1–226

    Google Scholar 

  • Shiel RJ, Walker KF, Williams WD (1982) Plankton of the lower River Murray South Australia. Aust J Mar Freshw Res 33:301–327

    Article  Google Scholar 

  • Thomaz SM, Da Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236

    Article  Google Scholar 

  • Villabona-González SL, Aguirre NJ, Estrada AL (2011) Influencia de las macrófitas sobre la estructura poblacional de rotíferos y microcrustáceos en un plano de inundación tropical. Rev Biol Trop 59:853–887

    PubMed  Google Scholar 

  • Yu J, Zhen W, Guan B, Zhong P, Jeppesen E, Liu Z (2016) Dominance of Myriophyllum spicatum in submerged macrophyte communities associated with grass carp. Knowl Manag Aquat Ecosyst 417:24

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their valuable comments and suggestions. This research was funded by Fondo para la Investigación Científica y Tecnológica (Prestamo BID, PICT 2012–2095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamila S. Battauz.

Additional information

Handling Editor: Kevin Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battauz, Y.S., de Paggi, S.B.J. & Paggi, J.C. Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain. Aquat Ecol 51, 191–201 (2017). https://doi.org/10.1007/s10452-016-9610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9610-3

Keywords

Navigation