Skip to main content
Log in

Functional diversity of algal communities from headwater grassland streams: How does it change following afforestation?

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Pine afforestation of grassland streams may lead to changes in species traits and therefore functional diversity of epilithic algal community. Here, we studied trait-based responses in three grassland and three afforested streams in a mountain watershed of Córdoba, Argentina. We hypothesized that afforestation would reduce functional diversity through a simplification of periphyton architecture resulting from reduction in light availability, and that changes in hydrological periods would influence community responses. Algal samples were collected at each stream during two different hydrological periods (high flow and low flow), and physicochemical variables were recorded. Selected traits included strategies and morphological characters related to resource access and disturbance resistance (size, morphological guild, resource requirement, attachment mechanism and life-form). We calculated two indices of functional diversity: Rao’s quadratic entropy (FD Q ) and functional variance. Most trait categories showed a significant effect of one or both factors; 26 % discriminated between vegetation types, 26 % reflect the changes between hydrological periods, and 47 % were sensitive to both of them. Our results revealed some categories of traits that can be used to distinguish changes in riparian vegetation, such as unicellular life-form and high-profile guild. Functional diversity of single traits was affected differently by pine afforestation. However, the most integrative index, the FD Q mean, partially supported our hypotheses. Afforestation reduced FD Q mean by 50 %, but only during low-flow period. FD Q mean was high and similar between streams at high flow, when environmental factors, such as discharge and temperature, could prevail on differences in riparian vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271

    Article  CAS  Google Scholar 

  • Bourassa N, Cattaneo A (2000) Responses of a lake outlet community to light and nutrient manipulation: effects on periphyton and invertebrate biomass and composition. Freshw Biol 44:629–639

    Article  Google Scholar 

  • Cabido D, Cabido M, Garre SM, Gorgas JA, Miatello R, Rambaldi S, Ravelo A, Tassile JL (2003) Regiones naturales de la provincia de Córdoba. Serie C. Publicaciones Técnicas. Agencia Córdoba. Dirección de Ambiente

  • Cummins KW, Merrit RW, Andrade PCN (2005) The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40(1):69–89

    Article  Google Scholar 

  • Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7(2):1–14

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Díaz Villanueva V, Font J, Schwartz T, Romaní AM (2011) Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27(1):59–71

    Article  PubMed  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(52):20684–20689

    Article  PubMed Central  PubMed  Google Scholar 

  • Dolécec S, Bonada N (2013) So what? Implications of loss of biodiversity for ecosystem functioning. In: Sabater S, Elosegi A (eds) River conservation. Challenges and opportunities. Fundación BBVA, Buenos Aires, pp 169–192

    Google Scholar 

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: A global synthesis with implications for policy. Glob Change Biol 11:1565–1576

    Article  Google Scholar 

  • Farley KA, Piñeiro G, Palmer SM, Jobbágy EG, Jackson RB (2008) Stream acidification and base cation losses with grassland afforestation. Water Resour Res 44:1–11

    Google Scholar 

  • Gómez N, Donato JC, Giorgi A, Guasch H, Mateo P, Sabater S (2009) La biota de los ríos: los microorganismos autótrofos. In: Elosegi A, Sabater S (eds) Conceptos y técnicas en ecología fluvial. Fundación BBVA, Buenos Aires, pp 219–242

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Guiry MD, Guiry GM (2014) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed Mar 2014

  • Hart DD, Biggs BJF, Nikora VI, Flinders CA (2013) Flow effects on periphyton patches and their ecological consequences in a New Zealand river. Freshw Biol 58:1588–1602

    Article  Google Scholar 

  • Hasle GR (1978) Some specific preparations: diatoms. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 136–142

    Google Scholar 

  • Hlúbiková D, Novais MH, Dohet A, Hoffmann L, Ector L (2014) Effect of riparian vegetation on diatom assemblages in headwater streams under different land uses. Sci Total Environ 475:234–247

    Article  PubMed  Google Scholar 

  • Hudon C, Bourget F (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330

    Article  Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett D, Cook CW, Farley KA, Le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Jobbágy EG, Acosta AM, Nosetto MD (2013) Rendimiento hídrico en cuencas primarias bajo pastizales y plantaciones de pino de las sierras de Córdoba (Argentina). Ecol Austral 23:87–96

    Google Scholar 

  • Komárek J, Hauer T (2013) CyanoDB.cz. On-line database of cyanobacterial genera. Word-wide electronic publication, University of South Bohemia and Institute of Botany AS CR. http://www.cyanodb.cz. Accessed Mar 2014

  • Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa L, Lürling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  • Lamb MA, Lowe RL (1987) Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio J Sci 87(3):72–78

    Google Scholar 

  • Lange K, Liess A, Piggott JJ, Townsend CR, Matthaei CD (2011) Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshw Biol 56:264–278

    Article  Google Scholar 

  • Larson CA, Passy SI (2012) Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiol Ecol 80:352–362

    Article  CAS  PubMed  Google Scholar 

  • Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Lowe RL, Golladay SW, Webster JR (1986) Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. J N Am Benthol Soc 5(3):221–229

    Article  Google Scholar 

  • Mason NWH, MacGillivray K, Steel JB et al (2003) An index of functional diversity. J Veg Sci 14:571–578

    Article  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • Oggero A, Arana M (2012) Inventario de la biodiversidad de plantas vasculares del sur de la zona serrana de Córdoba, Argentina. Hoehnea 39(2):171–199

    Article  Google Scholar 

  • Passy SI (2007) Diatom ecological guilds display distinct and predictable behaviour along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178

    Article  Google Scholar 

  • Passy SI (2008) Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proc Natl Acad Sci USA 105(28):9663–9667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passy SI, Larson CA (2011) Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microb Ecol 62:414–424

    Article  CAS  PubMed  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Plevich J, Nuñez C, Cantero J, Demaestri M, Viale S (2002) Biomasa del pastizal bajo diferentes densidades de pino (Pinus elliottii). Agroforestería en las Américas 9(33–34):19–23

    Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter B, Sparks R, Stromberg J (1997) The natural flow regime: a new paradigm for riverine conservation and restoration. Bioscience 47:769–784

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43

    Article  Google Scholar 

  • Rimet F, Bouchez A (2011) Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecol Indic 11:489–499

    Article  CAS  Google Scholar 

  • Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl Manag Aquat Ecosyst 406:1–14

    Article  Google Scholar 

  • Romaní AM, Borrego CM, Díaz-Villanueva V, Freixa A, Gich F, Ylla I (2014) Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming. Environ Microbiol 16(8):2550–2567

    Article  PubMed  Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80(3):469–484

    Article  Google Scholar 

  • Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Vanwilgen VW, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504

    Article  Google Scholar 

  • Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu. Accessed Mar 2014

  • Stenger-Kovács C, Lengyel E, Crossetti LO, Üveges V, Padisák J (2013) Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecol Indic 24:138–147

    Article  Google Scholar 

  • Stevenson RJ (1996) An introduction to algal ecology in freshwater benthic habitats. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology—freshwater benthic ecosystems. Academic Press, San Diego, pp 3–30

    Google Scholar 

  • Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 109–120

    Chapter  Google Scholar 

  • Tuji A (2000) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48:75–84

    Article  Google Scholar 

  • Villafañe VE, Reid FMH (1995) Métodos de microscopía para la cuantificación del fitoplancton. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Edit. Universitaria, Concepción, pp 169–185

    Google Scholar 

  • Villeneuve A, Montuelle B, Bouchez A (2010) Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquat Sci 72:33–44

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wagenhoff A, Lange K, Townsend CR, Matthaei CD (2013) Patterns of benthic algae and cyanobacteria along twin-stressor gradients of nutrients and fine sediment: a stream mesocosm experiment. Freshw Biol 58:1849–1863

    Article  Google Scholar 

  • Welcomme RL, Winemiller KO, Cowx IG (2006) Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Res Appl 22:377–396. doi:10.1002/rra.91

    Article  Google Scholar 

  • Wellnitz TA, Poff NL (2012) Current-mediated periphytic structure modifies grazer interactions and algal removal. Aquat Ecol 46:521–530

    Article  Google Scholar 

  • Wellnitz TA, Ward JV (1998) Does light intensity modify the effect mayfly grazers have on periphyton? Freshw Biol 39:135–149

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Ison for his assistance with the field surveys, E. Natale for her help with the study area map, and two reviewers and editor that greatly improved the quality of the manuscript. The work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Grant PICT 1113), Ministerio de Ciencia y Tecnología de la provincia de Córdoba (MinCyT Córdoba, Grant GRF 08) and Secretaría de Ciencia y Técnica Universidad Nacional de Río Cuarto. L. Cibils and J. Márquez have fellowships of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Cibils.

Additional information

Handling Editor: Michael T. Monaghan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 87 kb)

Supplementary material 2 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibils, L., Principe, R., Márquez, J. et al. Functional diversity of algal communities from headwater grassland streams: How does it change following afforestation?. Aquat Ecol 49, 453–466 (2015). https://doi.org/10.1007/s10452-015-9538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9538-z

Keywords

Navigation