Skip to main content
Log in

Supported lithium hydroxide for carbon dioxide adsorption in water-saturated environments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Rebreather-type personal protective equipment requires efficient removal of CO2 from the air that the user exhales. The required operating conditions of low CO2 partial pressure, low temperature, and water saturation create a challenging environment for developing high capacity CO2 adsorbents. Biphasic adsorbents of lithium hydroxide supported on high surface area carbons were synthesized and tested for CO2 capacity under water-saturated conditions. The LiOH phase provides high CO2 capacity through chemisorption while the porous carbon structure helps prevent the formation of diffusion barriers that limit the effectiveness of pure LiOH pellets. Several carbons with different pore morphology were tested, and it was determined that the ideal support has a high degree of mesoporosity that balances the need for high surface area without excess blockage of pore volume upon deposition of LiOH. The activated carbon Norit SX Ultra was chosen based on this criterion. It was found that the maximum achievable loading of LiOH on Norit SX Ultra was 30 wt%, and the highest CO2 capacity under water-saturated conditions at atmospheric pressure with one mole percent CO2 in the gas phase was 3.4 mol/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aprea, P., Caputo, D., Gargiulo, N., Iucolano, F., Pepe, F.: Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J. Chem. Eng. Data 55, 3655–3661 (2010)

    Article  CAS  Google Scholar 

  • Boryta, D.A., Maas, A.J.: Factors influencing rate of carbon dioxide reaction with lithium hydroxide. Ind. Eng. Chem. Process. Des. Dev. 10, 489–494 (1971)

    Article  CAS  Google Scholar 

  • Burtch, N.C., Jasuja, H., Walton, K.S.: Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014)

    Article  CAS  Google Scholar 

  • Cho, Y., Lee, J.-Y., Bokare, A.D., Kwon, S.B., Park, D.-S., Jung, W.-S., Choi, J.-S., Yang, Y.-M., Lee, J.-Y., Choi, W.: LiOH-embedded zeolite for carbon dioxide capture under ambient conditions. J. Ind. Eng. Chem. 22, 350–356 (2015)

    Article  CAS  Google Scholar 

  • Choi, S., Gray, M.L., Jones, C.W.: Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem 4, 628–635 (2011)

    Article  CAS  Google Scholar 

  • Furtado, A.M.B., Barpaga, D., Mitchell, L.A., Wang, Y., DeCoste, J.B., Peterson, G.W., LeVan, M.D.: Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption. Langmuir 28, 17450–17456 (2012)

    Article  CAS  Google Scholar 

  • Janus, R., Wach, A., Kustrowski, P., Dudek, B., Drozdek, M., Silvestre-Albero, A.M., Rodriguez-Reinoso, F., Cool, P.: Investigation on the low-temperature transformations of poly (furfuryl alcohol) deposited on MCM-41. Langmuir 29, 3045–3053 (2013)

    Article  CAS  Google Scholar 

  • Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., Hagiwara, Y.: Novel CO2 absorbents using lithium-containing oxide. Int. J. Appl. Ceram. Technol. 6, 467–475 (2005)

    Article  Google Scholar 

  • Kloetstra, K.R., Bekkum, H.V.: Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular sieve. J. Chem. Soc. Chem. Commun. 13, 258–263 (1995)

    Google Scholar 

  • Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., Lee, C.H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47, 1237–1242 (2002)

    Article  CAS  Google Scholar 

  • Mason, J.A., Sumida, K., Herm, Z.R., Krishna, R., Long, J.R.: Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2012)

    Article  Google Scholar 

  • Mosqueda, H.A., Vazquez, C., Bosch, P., Pfeiffer, H.: Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem. Mater. 18, 2307–2310 (2006)

    Article  CAS  Google Scholar 

  • Pakseresht, S., Kazemeini, M., Akbarnejad, M.M.: Equilibrium isotherms for CO, CO2, CH4, and C2H4 on the 5A molecular sieve by a simple volumetric apparatus. Sep. Purif. Technol. 28, 53–60 (2002)

    Article  CAS  Google Scholar 

  • Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 15, 250–255 (2001)

    Article  CAS  Google Scholar 

  • Smith, J.W.H., Romero, J.V., Dahn, T.R., Dunphy, K., Croll, L.M., Dahn, J.R.: The effect of co-impregnated acids on the performance of Zn-based broad spectrum respirator. J. Hazard. Mater. 235, 279–285 (2012)

    Article  Google Scholar 

  • Tovar, T.M., Zhao, J., Nunn, W.T., Barton, H.F., Peterson, G.W., Parsons, G.N., LeVan, M.D.: Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 138, 11449–11452 (2016)

    Article  CAS  Google Scholar 

  • Walton, K.S., Abney, M.B., LeVan, M.D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006)

    Article  CAS  Google Scholar 

  • Wang, Y., LeVan, M.D.: Adsorption equilibrium of binary mixtures of carbon dioxide and water vapor on zeolites 5A. J. Chem. Eng. Data 55, 3189–3195 (2010)

    Article  CAS  Google Scholar 

  • Williams, D.D., Miller, R.R.: Effect of water vapor on the LiOH-CO2 reaction. Dynamic isothermal system. Ind. Eng. Chem. Fundam. 9, 454–457 (1970)

    Article  CAS  Google Scholar 

  • Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003)

    Article  CAS  Google Scholar 

  • Yazaydin, A.O., Snurr, R.Q., Park, T.H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.L., Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)

    Article  CAS  Google Scholar 

  • Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide at high temperaturea review. Sep. Purif. Technol. 26, 195–205 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the U.S. Army Edgewood Chemical and Biological Center and the Defense Threat Reduction Agency for the support of this research under Contract W911SR-13-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Douglas LeVan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovar, T.M., LeVan, M.D. Supported lithium hydroxide for carbon dioxide adsorption in water-saturated environments. Adsorption 23, 51–56 (2017). https://doi.org/10.1007/s10450-016-9817-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9817-6

Keywords

Navigation