Skip to main content
Log in

Novel activated carbon fiber cloth filter with functionalized silica nanoparticles for adsorption of toxic industrial chemicals

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Toxic industrial chemicals (TICs) are used for various civilian and military operations but can be hazardous to humans. There is interest in developing filters that can remove a wide range of airborne TICs (e.g., basic, acidic, organophosphate, and aromatic compounds) to reduce exposure in the work place and from terrorist attacks. A regenerable TIC air filter is particularly desirable because it removes the need for costly filter disposal and replacement. This study evaluates commercially available activated carbon fiber cloth (ACFC) and ACFC that has been modified with functionalized nanoparticles for their abilities to adsorb select TICs and for the regenerability of the adsorbents. The unmodified and modified ACFC samples were tested here for their ability to adsorb anhydrous ammonia (NH3), hydrogen cyanide (HCN), and dimethyl methylphosphonate (DMMP) in dry and humid gas streams as representative basic, acidic, and organophosphate compounds, respectively. The unmodified ACFC was not an effective adsorbent for NH3 (i.e., 2 and 3.1 mg NH3/g ACFC at 1000 ppmv NH3 in dry and humid air respectively) or HCN (no detectable adsorption), but successfully adsorbed 840 mg DMMP/g ACFC at 100 ppmv DMMP. The modified ACFC showed significant improvements for NH3 and HCN adsorption in dried air (i.e., 19.5 mg NH3/g ACFC at 1000 ppmv NH3 and 4.7 mg HCN/g ACFC at 150 ppmv HCN, respectively) and in humid air (i.e., 41.4 mg NH3/g ACFC at 1000 ppmv NH3 and 1.6 mg HCN/g ACFC at 50 ppmv HCN, respectively) when compared to the unmodified sample. The modified ACFC also showed 2–5 % degradation of its initial dry mass after regeneration and then showed no detectable degradation. The modified ACFC also had similar electrical resistance to that of unmodified ACFC (i.e., within 1 %), indicating that it can be regenerated using electrothermal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alder, J., Fielden, P., et al.: The adsorption of hydrogen cyanide by impregnated activated carbon cloth. Part I: studies on cobalt and nickel acetates as impregnants for hydrogen cyanide removal. Carbon 26(5), 701–711 (1988)

    Article  CAS  Google Scholar 

  • Bansal, R.C., Goyal, M.: Modification of activated carbon surface. Activated Carbon Adsorption, pp. 52–60. CRC Press, Boca Raton (2005)

    Chapter  Google Scholar 

  • Blomfield, G.A., Little, L.H.: Chemisorption of ammonia on silica. Can. J. Chem. 51, 1771–1781 (1973)

    Article  CAS  Google Scholar 

  • Boudou, J.P., Chehimi, M., et al.: Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment. Carbon 41(10), 1999–2007 (2003)

    Article  CAS  Google Scholar 

  • Cal, M., Rood, M., et al.: Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth. Energy Fuels 11(2), 311–315 (1997)

    Article  CAS  Google Scholar 

  • Chemical Book. http://www.chemicalbook.com/ProductChemicalPropertiesCB8418753_EN.htm (2014). Accessed 31 May 2014

  • Corn, M.: Handbook of Hazardous Materials, p. 162. Academic Press, San Diego (2012)

    Google Scholar 

  • Cotte-Rodriguez, I., Justes, D., et al.: Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry. Analyst 131(4), 579–589 (2006)

    Article  CAS  Google Scholar 

  • Ellison, D.H.: Handbook of Chemical and Biological Warfare Agents, p. 46. CRC Press, Boca Raton (2008)

    Google Scholar 

  • Emamipour, H., Hashisho, Z., et al.: Steady-state and dynamic desorption of organic vapor from activated carbon with electrothermal swing adsorption. Environ. Sci. Technol. 41(14), 5063–5069 (2007)

    Article  CAS  Google Scholar 

  • Fingas, M.F.: Handbook of Hazardous Materials Spills Technology, pp. 32–38. McGraw Hill Professional, New York (2002)

    Google Scholar 

  • Hashisho, Z., Emamipour, H., et al.: Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption. Environ. Sci. Technol. 42(24), 9317–9322 (2008)

    Article  CAS  Google Scholar 

  • Hayes, J., Joseph, S.: Kirk-Othmer: Encyclopedia of Chemical Technology. Novoloid fibers, pp. 125–138. Wiley, New York (1981)

    Google Scholar 

  • Johnsen, D.L., Rood, M.J.: Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback. Environ. Sci. Technol. 46(20), 11305–11312 (2012)

    Article  CAS  Google Scholar 

  • Le Cloirec, P.: Adsorption onto activated carbon fiber cloth and electrothermal desorption of volatile organic compound (VOCs): a specific review. Chin. J. Chem. Eng. 20(3), 461–468 (2012)

    Article  CAS  Google Scholar 

  • Lo, S.-Y.: Characterization of the chemical, physical, thermal and electrical properties of a series of activated carbon fiber cloths. University of Illinois, Urbana-Champaign, Urbana, Illinois (2002)

  • Mangun, C.L., Braatz, R.D., et al.: Fixed bed adsorption of acetone and ammonia onto oxidized activated carbon fibers. Ind. Eng. Chem. Res. 38(9), 3499–3504 (1999)

    Article  CAS  Google Scholar 

  • Mangun, C.L., DeBarr, J.A., et al.: Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers. Carbon 39(11), 1689–1696 (2001)

    Article  CAS  Google Scholar 

  • Masuda, N., Takatsu, M., et al.: Sarin poisoning in Tokyo subway. Lancet 345(8962), 1446 (1995)

    Article  CAS  Google Scholar 

  • Montgomery, J.H.: Groundwater Chemicals Desk Reference, p. 51. CRC Press, Boca Raton (2000)

    Google Scholar 

  • Morita, H., Yanagisawa, N., et al.: Sarin poisoning in Matsumoto. Jpn. Lancet 346(8970), 290–293 (1995)

    Article  CAS  Google Scholar 

  • Petkovska, M., Tondeur, D., et al.: Temperature-swing gas separation with electrothermal desorption step. Sep. Sci. Technol. 26(3), 425–444 (1991)

    Article  CAS  Google Scholar 

  • Ramirez, D., Emamipour, H., et al.: Capture and recovery of methyl ethyl ketone with electrothermal-swing adsorption systems. J. Environ. Eng. 137(9), 826–832 (2011)

    Article  CAS  Google Scholar 

  • Rasko, J., Bansagi, T., et al.: HCN adsorption on silica and titania supported Rh catalysts studied by FTIR. Phys. Chem. Chem. Phys. 4(14), 3509–3513 (2002)

    Article  CAS  Google Scholar 

  • Romano, J.A., Lukey, B.J., et al.: Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics, p. 58. CRC Press, Boca Raton (2008)

    Google Scholar 

  • Singer, B., Hodgson, A., et al.: Indoor sorption of surrogates for sarin and related nerve agents. Environ. Sci. Technol. 39(9), 3203–3214 (2005)

    Article  CAS  Google Scholar 

  • Sullivan, P., Rood, M.J., et al.: Adsorption and electrothermal desorption of hazardous organic vapors. J. Environ. Eng. 127(3), 217–223 (2001)

    Article  CAS  Google Scholar 

  • Sullivan, P., Stone, B., et al.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13(3–4), 173–189 (2007)

    Article  CAS  Google Scholar 

  • Toxic Industrial Chemicals (TICs). OSHA. Accessed 22 Oct 2013

  • Wikipedia.: Matsumoto incident. http://en.wikipedia.org/wiki/Matsumoto_incident (2013a). Accessed 4 Dec 2013

  • Wikipedia.: Sarin gas attack on the Tokyo subway. http://en.wikipedia.org/wiki/Sarin_gas_attack_on_the_Tokyo_subway (2013b). Accessed 4 Apr 2013

  • Yao, M., Zhang, Q., et al.: Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations. J. Air Waste Manag. Assoc. 59(7), 882–890 (2009)

    Article  CAS  Google Scholar 

  • Zerbonia, R., Brockmann, C., et al.: Carbon bed fires and the use of carbon canisters for air emissions control on fixed-roof tanks. J. Air Waste Manag. Assoc. 51(12), 1617–1627 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by US Army (Contract Number: W9132T-12-C-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamipour, H., Johnsen, D.L., Rood, M.J. et al. Novel activated carbon fiber cloth filter with functionalized silica nanoparticles for adsorption of toxic industrial chemicals. Adsorption 21, 265–272 (2015). https://doi.org/10.1007/s10450-015-9668-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9668-6

Keywords

Navigation