Skip to main content
Log in

Mathematical modeling of the competitive sorption dynamics of acetone–butanol–ethanol on KA-I resin in a fixed-bed column

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The recovery and purification of biobutanol based on the adsorption method were performed in dynamic conditions. Computational and theoretical modeling is an important tool in the characterization, development, and validation of fixed-bed columns. Relevant breakthrough curves provide valuable information for designing fixed-bed adsorption processes for field applications. In the present study, a general rate model (GRM), implementing convection/diffusion approach theory and a competitive isotherm model, was used to predict the competitive sorption dynamics of acetone–butanol–ethanol (ABE) on a KA-I resin in a fixed-bed column under different operating conditions, i.e., inlet feed flow rate, initial adsorbate concentration, and bed height. The model simulation was quantified by the absolute average deviation (AAD). The calculated AAD values, ranging from 0.05 to 0.1, indicated that the GRM gives a general prediction for experimental data. The axial dispersion, external mass transfer, and pore diffusion coefficients were calculated by a series of empirical correlations. Biot number was used to identify the rate controlling step for the adsorption process of ABE on the resin. And the pore diffusion coefficient was found to be major governing factor for adsorption of ABE. The data and modeling presented are valuable for designing the continuous chromatographic separation process and simulation of ABE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A c :

Cross-section area of the fixed-bed column (cm2)

a :

Competitive Langmuir isotherm constant (mL/g)

b :

Competitive Langmuir isotherm constant (L/g)

Bi :

Biot number

C :

Concentration in the liquid phase (g/L)

c i,p :

Liquid phase concentration in the pore (g/L)

c 0 :

Initial adsorbate concentration (g/L)

C :

Dimensionless concentration in the liquid phase

C i,p :

Dimensionless concentration in the pore

d p :

Particle size of the resin (cm)

D ax :

Axial dispersion coefficient (cm2/min)

D m :

Molecular diffusivity (cm2/min)

D pore :

Pore diffusion coefficient (cm2/min)

k film :

External mass transfer coefficient (cm/min)

L c :

Length of the fixed-bed column (cm)

m :

Mass of the used resin (g)

M B :

Molecular weight of water

Pe :

Peclet number

q i,p :

Concentration in the stationary phase (mg/g)

Q f :

Volumetric flow rate of the liquid phase (mL/min)

r :

Radial distance within the adsorbent particle (cm)

r p :

Particle radius (cm)

R :

Dimensionless radial distance

St :

Stanton number

t :

Time (min)

t 1/2 :

Retention time (min), corresponding to half the initial adsorbate concentration

t M :

Dead time of the column (min), (t M  = L c /v)

T :

Operating temperature (K)

x :

Axial coordinate (cm)

X :

Dimensionless axial coordinate

U :

Superficial flow velocity (cm/min)

V :

Volume of the solution (mL)

V i,A :

Molar volume of adsorbate at normal boiling point[mL/(g mol)]

φ :

Association parameter (for water φ is given as 2.6)

ρ p :

Apparent density of the resin (g/mL)

ε b :

Bed porosity

ε p :

Particle porosity

ν :

Interstitial velocity of the liquid phase (cm/min), (v = Q f /(A c ε b ))

η B :

Viscosity of solution (mpa s)

τ :

Dimensionless time

A :

Acetone

B :

Butanol

E :

Ethanol

i :

Sorbate species

out:

Outlet

t :

Time

References

  • Abdehagh, N., Tezel, F.H., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19(6), 1263–1272 (2013). doi:10.1007/s10450-013-9566-8

    Article  CAS  Google Scholar 

  • Ahmad, A.A., Hameed, B.H.: Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 175(1–3), 298–303 (2010). doi:10.1016/j.jhazmat.2009.10.003

    Article  CAS  Google Scholar 

  • Buzanowski, M.A., Yang, R.T.: Extended linear driving-force approximation for intraparticle diffusion rate including short times. Chem. Eng. Sci. 44(11), 2683–2689 (1989). doi:10.1016/0009-2509(89)85211-X

    Article  CAS  Google Scholar 

  • Eom, M.-H., Kim, W., Lee, J., Cho, J.-H., Seung, D., Park, S., Lee, J.H.: Modeling of a biobutanol adsorption process for designing an extractive fermentor. Ind. Eng. Chem. Res. 52(2), 603–611 (2013). doi:10.1021/ie301249z

    Article  CAS  Google Scholar 

  • García, M., Sanz, M.T., Beltrán, S.: Separation by pervaporation of ethanol from aqueous solutions and effect of other components present in fermentation broths. J. Chem. Technol. Biotechnol. 84(12), 1873–1882 (2009). doi:10.1002/jctb.2259

    Article  Google Scholar 

  • Ghorai, S., Pant, K.K.: Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chem. Eng. J. 98(1–2), 165–173 (2004). doi:10.1016/j.cej.2003.07.003

    Article  CAS  Google Scholar 

  • Goto, M., Hirose, T.: Approximate rate equation for intraparticle diffusion with or without reaction. Chem. Eng. Sci. 48(10), 1912–1915 (1993). doi:10.1016/0009-2509(93)80362-T

    Article  CAS  Google Scholar 

  • Gu, T., Tsai, G.-J., Tsao, G.T.: New approach to a general nonlinear multicomponent chromatography model. AIChE J. 36(5), 784–788 (1990a). doi:10.1002/aic.690360517

    Article  CAS  Google Scholar 

  • Gu, T., Tsao, G.T., Tsai, G.-J., Ladisch, M.R.: Displacement effect in multicomponent chromatography. AIChE J. 36(8), 1156–1162 (1990b). doi:10.1002/aic.690360805

    Article  CAS  Google Scholar 

  • Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.M.: Fundamentals of Preparative and Nonlinear Chromatography. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Kleinübing, S.J., Guibal, E., da Silva, E.A., da Silva, M.G.C.: Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula. Chem. Eng. J. 184, 16–22 (2012). doi:10.1016/j.cej.2011.11.023

    Article  Google Scholar 

  • Kumar, P., Lau, P.W., Kale, S., Johnson, S., Pareek, V., Utikar, R., Lali, A.: Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies. J. Chromatogr. A 1356, 105–116 (2014). doi:10.1016/j.chroma.2014.06.035

    Article  CAS  Google Scholar 

  • Lin, X., Li, R., Wen, Q., Wu, J., Fan, J., Jin, X., Qian, W., Liu, D., Chen, X., Chen, Y., Xie, J., Bai, J., Ying, H.: Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin. Biotechnol. Bioproc. E. 18(2), 223–233 (2013). doi:10.1007/s12257-012-0549-5

    Article  CAS  Google Scholar 

  • Lin, X., Wu, J., Fan, J., Qian, W., Zhou, X., Qian, C., Jin, X., Wang, L., Bai, J., Ying, H.: Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: studies of adsorption isotherms and kinetics simulation. J. Chem. Technol. Biot. 87(7), 924–931 (2012). doi:10.1002/jctb.3701

    Article  CAS  Google Scholar 

  • Lin, Y.-L., Blaschek, H.P.: Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45(3), 966–973 (1983)

    CAS  Google Scholar 

  • Liu, D., Chen, Y., Li, A., Ding, F., Zhou, T., He, Y., Li, B., Niu, H., Lin, X., Xie, J., Chen, X., Wu, J., Ying, H.: Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresour. Technol. 129, 321–328 (2013). doi:10.1016/j.biortech.2012.11.090

    Article  CAS  Google Scholar 

  • Lv, L., Zhang, Y., Wang, K., Ray, A.K., Zhao, X.S.: Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent. J. Colloid Interface Sci. 325(1), 57–63 (2008). doi:10.1016/j.jcis.2008.04.067

    Article  CAS  Google Scholar 

  • Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102(3), 811–821 (2009). doi:10.1002/bit.22109

    Article  CAS  Google Scholar 

  • Oudshoorn, A., van der Wielen, L.A.M., Straathof, A.J.J.: Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem. Eng. J. 48(1), 99–103 (2009). doi:10.1016/j.bej.2009.08.014

    Article  CAS  Google Scholar 

  • Ponnusami, V., Rajan, K.S., Srivastava, S.N.: Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders. Chem. Eng. J. 163, 236–242 (2010). doi:10.1016/j.cej.2010.07.052

    Article  CAS  Google Scholar 

  • Quek, S.Y., Al-Duri, B.: Application of film-pore diffusion model for the adsorption of metal ions on coir in a fixed-bed column. Chem. Eng. Process. 46(5), 477–485 (2007). doi:10.1016/j.cep.2006.06.019

    Article  CAS  Google Scholar 

  • Qureshi, N., Hughes, S., Maddox, I.S., Cotta, M.A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess. Biosyst. Eng. 27(4), 215–222 (2005). doi:10.1007/s00449-005-0402-8

    Article  CAS  Google Scholar 

  • Saint Remi, J.C., Remy, T., Van Hunskerken, V., van de Perre, S., Duerinck, T., Maes, M., De Vos, D., Gobechiya, E., Kirschhock, C.E., Baron, G.V., Denayer, J.F.: Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4(8), 1074–1077 (2011). doi:10.1002/cssc.201100261

    Article  Google Scholar 

  • Saint Remi, J.C., Baron, G., Denayer, J.: Adsorptive separations for the recovery and purification of biobutanol. Adsorption 18(5–6), 367–373 (2012). doi:10.1007/s10450-012-9415-1

    Article  Google Scholar 

  • Schmidt-Traub, H.: Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents. Wiley-Vch, Weinheim (2005)

    Book  Google Scholar 

  • Siahpoosh, M., Fatemi, S., Vatani, A.: Mathematical modeling of single and multi-component adsorption fixed beds to rigorously predict the mass transfer zone and breakthrough curves. Iran. J. Chem. Chem. Eng. 28(3), 25–44 (2009)

    CAS  Google Scholar 

  • Sulaymon, A.H., Ahmed, K.W.: Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column. Environ. Sci. Technol. 42(2), 392–397 (2008). doi:10.1021/Es070516j

    Article  CAS  Google Scholar 

  • Suzuki, M., Smith, J.M.: Axial dispersion in beds of small particles. Chem. Eng. J. 3, 256–264 (1971)

    Article  Google Scholar 

  • Volesky, B., Prasetyo, I.: Cadmium removal in a biosorption column. Biotechnol. Bioeng. 43(11), 1010–1015 (1994). doi:10.1002/bit.260431103

    Article  CAS  Google Scholar 

  • Wu, F.-C., Tseng, R.-L., Juang, R.-S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153(1–3), 1–8 (2009). doi:10.1016/j.cej.2009.04.042

    CAS  Google Scholar 

  • Yen, H.-W., Li, R.-J.: The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. J. Chem. Technol. Biot. 86(11), 1399–1404 (2011). doi:10.1002/jctb.2640

    Article  CAS  Google Scholar 

  • Zhang, R., Ritter, J.A.: New approximate model for nonlinear adsorption and diffusion for single particle. Chem. Eng. Sci. 52(18), 3161–3172 (1997). doi:10.1016/S0009-2509(97)00124-3

    Article  CAS  Google Scholar 

  • Zhou, J., Wu, J., Liu, Y., Zou, F., Wu, J., Li, K., Chen, Y., Xie, J., Ying, H.: Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin. Bioresour. Technol. 143, 360–368 (2013). doi:10.1016/j.biortech.2013.06.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), National Outstanding Youth Foundation of China (Grant No.: 21025625), 473000, 12KJB530003, 21306086, National High-Tech Research and Development Plan of China (863 Program, 2012AA021202) and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglan Wu or Hanjie Ying.

Additional information

Pengfei Jiao and Jinglan Wu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, P., Wu, J., Zhou, J. et al. Mathematical modeling of the competitive sorption dynamics of acetone–butanol–ethanol on KA-I resin in a fixed-bed column. Adsorption 21, 165–176 (2015). https://doi.org/10.1007/s10450-015-9659-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9659-7

Keywords

Navigation