Skip to main content

Advertisement

Log in

Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We present breakthrough experiments in a fixed bed adsorber packed with commercial activated carbon involving feed mixtures of carbon dioxide and hydrogen of different compositions. The experiments are carried out at four different temperatures (25 °C, 45 °C, 65 °C and 100 °C) and seven different pressures (1 bar, 5 bar, 10 bar, 15 bar, 20 bar, 25 bar and 35 bar). The interpretation of the experimental data is done by describing the adsorption process with a detailed one-dimensional model consisting of mass and heat balances and several constitutive equations, such as an adsorption isotherm and an equation of state. The dynamic model parameters, i.e. mass and heat transfer, are fitted to one single experiment (reference experiment) and the model is then further validated by predicting the remaining experiments. Furthermore, the choice of the isotherm model is discussed. The assessment of the model accuracy is carried out by comparing simulation results and experimental data, and by discussing key features and critical aspects of the model. This study is valuable per se and a necessary step toward the design, development and optimization of a pressure swing adsorption process for the separation of CO2 and H2 for example in the context of a pre-combustion CO2 capture process, such as the integrated gasification combined cycle technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a p :

specific surface of the adsorbent particles, [m2/m3]

a w :

cross section of the column wall, [m2]

c :

fluid phase concentration, [mol/m3]

C ads :

heat capacity of the adsorbed phase, [J/(K kg)]

C g :

heat capacity of the gas, [J/(K m3)]

\(C_{\mathrm{g}}^{\mathrm{mol}}\) :

specific heat capacity of the gas, [J/(K mol)]

C s :

heat capacity of the solid, [J/(K kg)]

C w :

lumped heat capacity of the wall, [J/(K m3)]

D e :

effective diffusion coefficient into the adsorbent particles [m2/s]

D L :

axial dispersion coefficient [m2/s]

D m :

molecular diffusion coefficient [m2/s]

d p :

particle diameter, [m]

ΔH :

heat of adsorption, [J/mol]

h L :

heat transfer coefficient (lumping column inside + wall), [J/(m2 s K)]

h W :

heat transfer coefficient (lumping wall + heating), [J/(m2 s K)]

k :

overall mass transfer coefficient, [1/s]

K :

Langmuir equilibrium constant, [1/Pa]

K L :

effective axial thermal conductivity in the fluid phase, [J/(m s K)]

L :

column length [m]

N :

number of species, [–]

N vol :

number of volume elements in the column, [–]

p :

fluid pressure, [Pa]

q :

solid phase concentration, [mol/kg]

q :

solid phase concentration at equilibrium, [mol/kg]

q s :

solid phase concentration at saturation, [mol/kg]

R :

ideal gas constant, [J/(K mol)]

R i :

inner column radius, [m]

R o :

outer column radius, [m]

s :

exponent in Sips isotherm [–]

s 1 :

parameter for temperature dependent description of s, [–]

s 2 :

parameter for temperature dependent description of s, [–]

t :

time, [s]

T :

temperature, [K]

T w :

wall temperature, [K]

T amb :

ambient temperature, [K]

u :

superficial gas velocity, [m/s]

y :

mole fraction, [–]

z :

space coordinate in axial direction, [m]

ε b :

bed void fraction, [–]

ε t :

overall void fraction, [–]

θ :

parameter for temperature dependent description of q s, [J/mol]

Θ :

parameter for temperature dependent description of K, [J/mol]

μ :

dynamic viscosity, [Pas]

ρ :

fluid phase density, [kg/m3]

ρ b :

bulk density of the packing, [kg/m3]

ρ p :

particle density, [kg/m3]

ω :

parameter for temperature dependent description of q s, [mol/kg]

Ω :

parameter for temperature dependent description of K, [1/Pa]

feed:

feed

i :

component i

init:

initial

j :

component j

pipe:

piping

BPR:

back pressure regulator

CCS:

Carbon Capture and Storage

EOS:

Equation of State

IGCC:

Integrated Gasification Combined Cycle

MSB:

magnetic suspension balance

MFC:

mass flow controller

MS:

mass spectrometer

PDE:

Partial Differential Equations

PSA:

Pressure Swing Adsorption

TSA:

Temperature Swing Adsorption

References

  • Arstad, B., Fjellvåg, H., Kongshaug, K., Swang, O., Blom, R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14(6), 755–762 (2008)

    Article  CAS  Google Scholar 

  • Belmabkhout, Y., Sayari, A.: Isothermal versus non-isothermal adsorption desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas. Energy Fuels 24(9), 5273–5280 (2010)

    Article  CAS  Google Scholar 

  • Do, D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998), pp. 57–64, chapter 3.2.2

    Book  Google Scholar 

  • Haynes, W.M.: CRC Handbook of Chemistry and Physics, 92th edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., Long, J.R.: Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133(15), 5664–5667 (2011)

    Article  CAS  Google Scholar 

  • IPCC: IPCC Special Report on Carbon Capture and Storage. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • IPCC: Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G.: Efficient and accurate numerical simulation of nonlinear chromatographic processes. Comput. Chem. Eng. 35(11), 2294–2305 (2011)

    Article  CAS  Google Scholar 

  • Kim, J.-N., Chue, K.-T., Kim, K.-I., Cho, S.-H., Kim, J.-D.: Non-isothermal adsorption of nitrogen-carbon dioxide mixture in a fixed bed of zeolite-X. J. Chem. Eng. Jpn. 27(1), 45–51 (1994)

    Article  CAS  Google Scholar 

  • Leva, M.: Heat transfer to gases through packed tubes. Ind. Eng. Chem. 39(7), 857–862 (1947)

    Article  CAS  Google Scholar 

  • LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Lin, W., Farooq, S.: Estimation of overall effective coefficient of heat transfer for nonisothermal fixed-bed adsorption. Chem. Eng. Sci. 54, 4031–4040 (1999)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption. Multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66(3), 303–317 (2011)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Hydrogen purification from refinery fuel gas by pressure swing adsorption. AIChE J. 44(9), 1985–1992 (1998)

    Article  CAS  Google Scholar 

  • Mulgundmath, V.P., Jones, R.A., Tezel, F.H., Thibault, J.: Fixed bed adsorption for the removal of carbon dioxide from nitrogen: breakthrough behaviour and modelling for heat and mass transfer. Sep. Purif. Technol. 85, 12–27 (2012)

    Article  Google Scholar 

  • NIST: NIST Chemistry WebBook (2011). http://webbook.nist.gov/chemistry

  • Park, J.-H., Kim, J.-N., Cho, S.-H.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46(4), 790–802 (2000)

    Article  CAS  Google Scholar 

  • Kim, J.-N., Kim, K.-I., Cho, S.-H., Kim, J.-D., Yang, R.T.: Adsorber dynamics and optimal design of layered beds for multicomponent gas adsorption. Chem. Eng. Sci. 53(23), 3951–3963 (1998)

    Article  Google Scholar 

  • Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill, New York (1984)

    Google Scholar 

  • Rohsenow, W.M., Hartnett, J.P., Ganić, E.N.: Handbook of Heat Transfer Applications, 2nd edn. McGraw-Hill, New York (1985)

    Google Scholar 

  • Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D., Farooq, S., Knaebel, K.: Pressure Swing Adsorption. VCH, Weinheim (1994)

    Google Scholar 

  • Schell, J., Casas, N., Pini, R., Mazzotti, M.: Pure and binary adsorption of CO2, H2 and N2 on activated carbon. Adsorption 18(1), 49–65 (2012)

    Article  CAS  Google Scholar 

  • Taczyk, M., Warmuziski, K.: Multicomponent pressure swing adsorption. Part II. Experimental verification of the model. Chem. Eng. Process. 37(4), 301–315 (1998)

    Article  Google Scholar 

  • U.S. Department of Energy: DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap (2010)

  • U.S. Energy Information Administration: International Energy Outlook 2011 (2011)

  • Webley, P.A., He, J.: Fast solution-adaptive finite volume method for PSA/VSA cycle simulation; 1 single step simulation. Comput. Chem. Eng. 23(11–12), 1701–1712 (2000)

    Article  CAS  Google Scholar 

  • Zhou, L., Li, J., Su, W., Sun, Y.: Experimental studies of a new compact design four-bed PSA equipment for producing oxygen. AIChE J. 51(10), 2695–2701 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Union’s Seventh Framework Program (FP7/2007-2011) under grant agreement n211971 (the DECARBit project)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mazzotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, N., Schell, J., Pini, R. et al. Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18, 143–161 (2012). https://doi.org/10.1007/s10450-012-9389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9389-z

Keywords

Navigation