Skip to main content
Log in

CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Grand Canonical Monte Carlo simulations combined with adsorption measurements have been carried out to gain further insight into the CO2 adsorption process at the microscopic scale in both LiY and NaY faujasites at various temperatures. A new Li+−CO2 force field derived by ab initio calculations was validated by a reasonable agreement between the simulated isotherms and those obtained by experiments in a wide range of temperature (from 323 K to 473 K). In addition, the microscopic mechanisms of CO2 adsorption in both systems, consistent with the trends observed for the simulated differential enthalpies of adsorption as a function of the loading, were proposed. It was observed that two different types of adsorption behaviour exist for NaY and LiY at 323 K and 373 K, mainly caused by the significant more exposed position of the SII Na+ from the six-ring plane of the supercage compared to those occupied by the SII Li+, whereas at higher temperature, both faujasites exhibit the same flat profile for the differential enthalpy of adsorption as a function of loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte Carlo simulation of single-and binary- component adsorption of CO2, N2 and H2 in zeolites Na-4A. Energy Fuels 17, 977–983 (2003)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Stuart, F.R.S.: Ion exchange and the thermodynamics of intracrystalline sorption, Proc. Roy. Soc. 464–483 (1959)

  • Barrer, R.M., Gibbons, R.M.: Zeolitic carbon dioxide: Energetics and equilibria in relation to exchangeable cations in faujasite. J. Chem. Soc., Faraday Trans. 1 61, 948–961 (1965)

    CAS  Google Scholar 

  • Belmabkhout, Y., Frère, M., De Weireld, G.: High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods. Meas. Sci. Technol. 15, 848–852 (2004)

    Article  CAS  Google Scholar 

  • Bezus, A.G., Kiselev, A.V., Sedlacek, Z., Pham Quang, J.: Adsorption of ethane and ethylene on X-zeolites containing Li+, Na+, K+, Rb+ and Cs+ cations. J. Chem. Soc., Faraday Trans. 1 67, 468–482 (1971)

    CAS  Google Scholar 

  • Coe, C.G.: U.S. Patent 5813815 (1992)

  • Corma, A.: State of the art and future challenges of zeolites as catalysts. J. Catal. 216(1–2), 298–312 (2003)

    Article  CAS  Google Scholar 

  • Demontis, P., Suffriti, G.B.: Structure and dynamics of zeolites investigated by molecular dynamics. Chem. Rev. 97, 2845–2878 (1997)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Seif, R., Losch, H.W.: Adsorption equilibria of CO/H2 with a magnetic suspension balance. Purely gravimetric measurement. J. Therm. Anal. Calorim. 71, 73–82 (2003)

    Article  CAS  Google Scholar 

  • Dzhigit, O.M., Kiselev, A.V., Mikos, K.N., Muttik, G.G., Rahmanova, T.A.: Heats of adsorption of water vapour on X-zeolites containing Li+, Na+, K+, Rb+ and Cs+ cations. J. Chem. Soc. Faraday Trans. 1 67, 458–467 (1971)

    Article  CAS  Google Scholar 

  • Fitch, A.N., Jobic, H., Renouprez, A.: Localization of benzene in sodium-Y zeolites by powder neutron diffraction. J. Phys. Chem. B 90, 1311–1318 (1986)

    Article  CAS  Google Scholar 

  • Forano, C., Slade, R.C.T., Krogh Andersen, E., Krogh Andersen, I.G., Prince, E.: Neutron diffraction determination of full structures of anhydrous LiX and LiY zeolites. J. Solid State Chem. 82, 95–102 (1989)

    Article  CAS  Google Scholar 

  • Gaffney, T.R., Golden, T.C., Mayorga, S.G., Brzozowski, J.R., Talyer, F.W.: US Patent 5917136 (1999)

  • Harlick, P.J.E., Tezel, F.H.: An experimental adsorbetn screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)

    Article  CAS  Google Scholar 

  • Hirotani, A., Mizukami, K., Miura, R., Takaba, H., Miya, T., Fahmi, A., Stirling, A., Kubo, M., Miyamoto, A.: Grand Canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5. Appl. Surf. Sci. 120, 81–84 (1997)

    Article  CAS  Google Scholar 

  • Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites, NH3, CO2 and H2O in zeolite 4A. J. Phys. Chem. B 108, 20155–20159 (2004)

    Article  CAS  Google Scholar 

  • Keller, J., Staudt, R.: Gas Adsorption Equilibria. Experimental Methods and Adsorption Isotherms. Springer, New York (2005)

    Google Scholar 

  • Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., Lee, C.H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47, 1237–1242 (2002)

    Article  CAS  Google Scholar 

  • Llewellyn, P.L., Maurin, G.: Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Cr. Chimie 8, 283–302 (2005a)

    Article  CAS  Google Scholar 

  • Llewellyn, P.L., Maurin, G., Poyet, Th., Dufau, N., Denoyel, R., Rouquerol, F.: Do the differential enthalpies of adsorption vary between 77 K and 302 K? An experimental case study of argon and nitrogen on two faujasite type zeolites. Adsorption 11, 73–78 (2005b)

    Article  Google Scholar 

  • Losch, H.W.: Renaissance of gravimetry in metrology under controlled environments—the magnetic supspension balance. In: Cooper, E. (ed.) Global Chemical Processing & Engineering Industry. Mountain High Images, New York (1999)

    Google Scholar 

  • Macedonia, M.D., Moore, D.D., Maginn, E.J., Olken, M.M.: Adsorption studies of methane, ethane, and argon in the zeolite mordenite: molecular simulations and experiments. Langmuir 16, 3823–3834 (2000)

    Article  CAS  Google Scholar 

  • Maurin, G., Bell, R., Kuchta, B., Llewellyn, P.L., Poyet, Th.: Adsorption of non polar and quadrupolar gases in siliceous faujasite: molecular simulations and experiments. Adsorption 11, 331–336 (2005a)

    Article  Google Scholar 

  • Maurin, G., Llewellyn, P.L., Poyet, Th., Kuchta, B.: Adsorption of argon and nitrogen in X-faujasites: relationships for understanding the interactions with monovalent and divalent cations. Microporous Mesoporous Mater. 79, 53–59 (2005b)

    Article  CAS  Google Scholar 

  • Maurin, G., Llewellyn, P.L., Poyet, Th., Kuchta, B.: Influence of extra-framework cations on the adsorption properties of X-faujasite systems: microcalorimetry and molecular simulation. J. Phys. Chem. B 109, 125–129 (2005c)

    Article  CAS  Google Scholar 

  • Maurin, G., Llewellyn, P.L., Bell, R.G.: Adsorption mechanism of carbon dioxide in faujasites: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005d)

    Article  CAS  Google Scholar 

  • Neuzil, R.W.: U.S. Patent 3558561 (1971)

  • Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic, London (1982)

    Google Scholar 

  • Plant, D.F., Déroche, I., Gaberova, L., Llewellyn, P.L., Maurin, G.: CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments. Chem. Phys. Lett. 426, 387–392 (2006)

    Article  CAS  Google Scholar 

  • Plant, D.F., Maurin, G., Déroche, I., Llewellyn, P.L.: Investigation of CO2 adsorption in faujasite systems: Grand Canonical Monte Carlo and molecular dynamics simulations based on new derived Na+−CO2. Microporous Mesoporous Mater. 2, 440 (2007)

    Google Scholar 

  • Ruthven, D.M., Shamasuzzaman, F., Knaebel, K.S.: Pressure Swing Adsorption. VCH, New York (1994)

    Google Scholar 

  • Savitz, S., Myers, A.L., Gorte, R.J.: A calorimetric investigation of CO, N2 and O2 in alkali-exchanged MFI. Microporous Mesoporous Mater. 37, 33–40 (2000)

    Article  CAS  Google Scholar 

  • Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide art high temperature, a review. Sep. Purif. Technol. 26, 195–205 (2002)

    Article  CAS  Google Scholar 

  • Yucel, H., Ruthven, D.M.: Diffusion of CO2 in 4A and 5A zeolite crystals. J. Colloid Interface Sci. 74, 186–195 (1980)

    Article  CAS  Google Scholar 

  • Walton, K.S., Abney, M.B., LeVan, M.D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Maurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurin, G., Belmabkhout, Y., Pirngruber, G. et al. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments. Adsorption 13, 453–460 (2007). https://doi.org/10.1007/s10450-007-9038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9038-0

Keywords

Navigation