Skip to main content
Log in

QTT-finite-element approximation for multiscale problems I: model problems in one dimension

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Tensor-compressed numerical solution of elliptic multiscale-diffusion and high frequency scattering problems is considered. For either problem class, solutions exhibit multiple length scales governed by the corresponding scale parameter: the scale of oscillations of the diffusion coefficient or smallest wavelength, respectively. As is well-known, this imposes a scale-resolution requirement on the number of degrees of freedom required to accurately represent the solutions in standard finite-element (FE) discretizations. Low-order FE methods are by now generally perceived unsuitable for high-frequency coefficients in diffusion problems and high wavenumbers in scattering problems. Accordingly, special techniques have been proposed instead (such as numerical homogenization, heterogeneous multiscale method, oversampling, etc.) which require, in some form, a-priori information on the microstructure of the solution. We analyze the approximation properties of tensor-formatted, conforming first-order FE methods for scale resolution in multiscale problems without a-priori information. The FE methods are based on the dynamic extraction of principal components from stiffness matrices, load and solution vectors by the quantized tensor train (QTT) decomposition. For prototypical model problems, we prove that this approach, by means of the QTT reparametrization of the FE space, allows to identify effective degrees of freedom to replace the degrees of freedom of a uniform “virtual” (i.e. never directly accessed) mesh, whose number may be prohibitively large to realize computationally. Precisely, solutions of model elliptic homogenization and high-frequency acoustic scattering problems are proved to admit QTT-structured approximations whose number of effective degrees of freedom required to reach a prescribed approximation error scales polylogarithmically with respect to the reciprocal of the target Sobolev-norm accuracy ε with only a mild dependence on the scale parameter. No a-priori information on the nature of the problems and intrinsic length scales of the solution is required in the numerical realization of the presently proposed QTT-structured approach. Although only univariate model multiscale problems are analyzed in the present paper, QTT structured algorithms are applicable also in several variables. Detailed numerical experiments confirm the theoretical bounds. As a corollary of our analysis, we prove that for the mentioned model problems, the Kolmogorov n-widths of solution sets are exponentially small for analytic data, independently of the problems’ scale parameters. That implies, in particular, the exponential convergence of reduced basis techniques which is scale-robust, i.e., independent of the scale parameter in the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for spacetime simultaneous discretizations of parabolic pdes. Numer. Linear Algebra Appl. 22(2), 317–337 (2015). doi:10.1002/nla.1951

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971). doi:10.1007/BF02165003

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmayr, M., Dahmen, W.: Adaptive low-rank methods for problems on Sobolev spaces with error control in L 2. arXiv:1412.3951. (2014)

  4. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging processes in periodic media, Mathematics and its Applications, vol. 36. Springer. doi:10.1007/978-94-009-2247-1

  5. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. doi:10.1002/nla.1818 (2012)

  6. Buffa, A., Sangalli, G., Schwab, C.: Exponential convergence of the hp version of isogeometric analysis in 1D. In: Proceedings. doi:10.1007/978-3-319-01601-6_15 (2014)

  7. Davis, P.J.: Interpolation and approximation. Dover Publications (1975)

  8. Dolgov, S., Khoromskij, B., Oseledets, I.: Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the fokker–planck equation. SIAM J. Sci. Comput. 34(6), A3016–A3038 (2012). doi:10.1137/120864210

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolgov, S.V., Kazeev, V.A., Khoromskij, B.N.: The tensor-structured solution of one-dimensional elliptic differential equations with high-dimensional parameters. Preprint 51, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2012/prepr2012-51.html (2012)

  10. Dolgov, S.V., Khoromskij, B.N.: Tensor-product approach to global time-space-parametric discretization of chemical master equation. Preprint 68, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2012/prepr2012-68.html (2012)

  11. Dolgov, S.V., Khoromskij, B.N., Oseledets, I.V., Tyrtyshnikov, E.E.: Tensor structured iterative solution of elliptic problems with jumping coefficients. Preprint 55, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2010/prepr2010-55.html (2010)

  12. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014). doi:10.1137/140953289

    Article  MathSciNet  MATH  Google Scholar 

  13. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications 31(4), 2029–2054 (2010). doi:10.1137/090764189. http://link.aip.org/link/?SML/31/2029/1

    Article  MathSciNet  MATH  Google Scholar 

  14. Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. Preprint 308, Institut für Geometrie und Praktische Mathematik, RWTH Aachen. http://www.igpm.rwth-aachen.de/Download/reports/pdf/IGPM308_k.pdf (2010)

  15. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013). doi:10.1002/gamm.201310004

    Article  MathSciNet  MATH  Google Scholar 

  16. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, vol. 42. Springer (2012). doi:10.1007/978-3-642-28027-6. http://www.springerlink.com/content/l62t86

  17. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009). doi:http://www.springerlink.com/content/t3747nk47m368g44, 10.1007/s00041-009-9094-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2005). doi:10.1137/030601077

    Article  MathSciNet  MATH  Google Scholar 

  19. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the Tensor Train format. SIAM J. Sci. Comput. 34(2), A683–A713 (2012). doi:10.1137/100818893

    Article  MathSciNet  MATH  Google Scholar 

  20. Ihlenburg, F.: Finite element analysis of acoustic scattering, Applied Mathematical Sciences, vol. 132. Springer, New York (1998). doi:10.1007/b98828

    Book  MATH  Google Scholar 

  21. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer (1994). http://www.springer.com/book/9783642846618

  22. Kau, H.T.: An inequality for algebraic polynomials, and the dependence between the best polynomial approximations \(e(f)_{L_{p}}\) and \(e(f)_{L_{q}}\) of functions f(x)L p (in Russian). Acta Math. Acad. Sci. Hung. 27 (1-2), 141–147 (1976). doi:10.1007/BF01896769

    Article  Google Scholar 

  23. Kazeev, V.: Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. Ph.D. thesis, SAM, ETH Zurich, ETH Dissertation No. 23002. doi:10.3929/ethz-a-010554062. http://e-collection.library.ethz.ch/view/eth:48314

  24. Kazeev, V.: Tensor-structured multilevel approximation of polynomial and piecewise-analytic functions (in preparation)

  25. Kazeev, V., Khammash, M., Nip, M., Schwab, C.: Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10 (3) (2014). doi:10.1371/journal.pcbi.1003359

  26. Kazeev, V., Reichmann, O., Schwab, C.: hp-DG-QTT solution of high-dimensional degenerate diffusion equations. Research Report 11, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/2012/11 (2012)

  27. Kazeev, V., Reichmann, O., Schwab, C.: Low-rank tensor structure of linear diffusion operators in the TT and QTT formats. Linear Algebra Appl. (2013). doi:10.1016/j.laa.2013.01.009

  28. Kazeev, V., Schwab, C.: Approximation of singularities by quantized-tensor FEM. In: Proceedings in Applied Mathematics and Mechanics. doi:10.1002/pamm.201510353, vol. 15, pp 743–746 (2015)

  29. Kazeev, V., Schwab, C.: Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. Research Report 24, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/2015/24 (2015)

  30. Kazeev, V., Schwab, C.: Tensor approximation of stationary distributions of chemical reaction networks. SIAM J. Matrix Anal. Appl. 36(3), 1221–1247 (2015). doi:10.1137/130927218

    Article  MathSciNet  MATH  Google Scholar 

  31. Kazeev, V.A., Khoromskij, B.N.: Low-rank explicit QTT representation of the Laplace operator and its inverse. SIAM J. Matrix Anal. Appl. 33(3), 742–758 (2012). doi:10.1137/100820479

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazeev, V.A., Khoromskij, B.N., Tyrtyshnikov, E.E.: Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput. (2013)

  33. Khoromskij, B.N.: \(\mathcal {O}(d n)\)-quantics approximation of n-d tensors in high-dimensional numerical modeling. Constr. Approx. 34(2), 257–280 (2011). doi:10.1007/s00365-011-9131-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Khoromskij, B.N., Khoromskaia, V., Flad, H.J.: Numerical solution of the Hartre-Fock equation in multilevel tensor-structured format. SIAM J. Sci. Comput. 33(1), 45–65 (2011). doi:10.1137/090777372. http://link.aip.org/link/?SCE/33/45/1

    Article  MathSciNet  MATH  Google Scholar 

  35. Khoromskij, B.N., Oseledets, I.V.: A fast iteration method for solving elliptic problems with quasiperiodic coefficients. Russ. J. Numer. Anal. Math. Model. 30(6), 329–344 (2015). doi:10.1515/rnam-2015-0030. http://www.degruyter.com/view/j/rnam.2015.30.issue-6/rnam-2015-0030/rnam-2015-0030.xml

    Article  MathSciNet  MATH  Google Scholar 

  36. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011). http://epubs.siam.org/sisc/resource/1/sjoce3/v33/i1/p364_s1

    Article  MathSciNet  MATH  Google Scholar 

  37. Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace correction for symmetric eigenvalue problems. Technical report 40, MATHICSE EPFL. http://sma.epfl.ch/~anchpcommon/publications/EVAMEN.pdf (2013)

  38. Kressner, D., Steinlechner, M., Vandereycken, B.: A fast iteration method for solving elliptic problems with quasiperiodic coefficients. arXiv:1508.02988 (2015)

  39. Maday, Y., Mula, O., Turinici, G.: Convergence analysis of the generalized empirical interpolation method. Tech. rep., HAL-UPMC. http://hal.upmc.fr/file/index/docid/1032458/filename/maday_mula_turinici_ConvRates_SINUM_Submitted.pdf

  40. Nessel, R.J., Wilmes, G.: Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type. J. Aust. Math. Soc. Ser. A 25, 7–18 (1978). doi:10.1017/S1446788700038878

    Article  MathSciNet  MATH  Google Scholar 

  41. Oseledets, I.: Approximation of matrices with logarithmic number of parameters. Dokl. Math. 80, 653–654 (2009). doi:10.1134/S1064562409050056

    Article  MATH  Google Scholar 

  42. Oseledets, I., Dolgov, S.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 34(5), A2718–A2739 (2012). doi:10.1137/110833142

    Article  MathSciNet  MATH  Google Scholar 

  43. Oseledets, I.V.: Approximation of 2d2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31(4), 2130–2145 (2010). doi:10.1137/090757861. http://link.aip.org/link/?SML/31/2130/1

    Article  MathSciNet  MATH  Google Scholar 

  44. Oseledets, I.V.: Tensor train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). doi:10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  45. Oseledets, I.V.: Constructive representation of functions in tensor formats. Constr. Approx. 37, 1–18 (2013). http://link.springer.com/article/10.1007/s00365-012-9175-x

    Article  MathSciNet  MATH  Google Scholar 

  46. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009). doi:10.1137/090748330. http://epubs.siam.org/sisc/resource/1/sjoce3/v31/i5/p3744_s1

    Article  MathSciNet  MATH  Google Scholar 

  47. Pinkus, A.: n-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7. Springer, Berlin (1985). doi:10.1007/978-3-642-69894-1

    Google Scholar 

  48. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations, UNITEXT, vol. 92. Springer (2016). http://link.springer.com/book/10.1007/978-3-319-15431-2

  49. Schwab, C.: P- and H p-FEM: Theory and Application to Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)

    Google Scholar 

  50. Tyrtyshnikov, E.E.: Tensor approximations of matrices generated by asymptotically smooth functions. Sbornik: Math. 194 (5), 941–954 (2003). doi:10.1070/SM2003v194n06ABEH000747. http://iopscience.iop.org/1064-5616/194/6/A09

    Article  MathSciNet  MATH  Google Scholar 

  51. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for hpk-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011). doi:10.1007/s00211-010-0338-z

    Article  MathSciNet  MATH  Google Scholar 

  52. Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys. Rev. Lett. 93(22), 227,205 (2004). doi:10.1103/PhysRevLett.93.227205

    Article  Google Scholar 

  53. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147,902 (2003). doi:10.1103/PhysRevLett.91.147902

    Article  Google Scholar 

  54. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48(14), 10,345–10,356 (1993). doi:10.1103/PhysRevB.48.10345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kazeev.

Additional information

Communicated by: Karsten Urban

CS was supported by the European Research Council through the FP7 Advanced Grant AdG247277. The research of VK was performed at the Seminar for Applied Mathematics, ETH Zurich. IO and MR were supported by the Ministry of Education and Science of Russian Federation, Grant Agreement no. 14.618.21.0004, the unique project identifier RFMEFI61815X0004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeev, V., Oseledets, I., Rakhuba, M. et al. QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Adv Comput Math 43, 411–442 (2017). https://doi.org/10.1007/s10444-016-9491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9491-y

Keywords

Mathematics Subject Classification (2010)

Navigation