Skip to main content
Log in

Model order reduction of parameterized circuit equations based on interpolation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the state-of-the-art interpolation-based model order reduction methods are applied to parameterized circuit equations. We analyze these methods in great details, through which the advantages and disadvantages of each method are illuminated. The presented model reduction methods are then tested on two circuit models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computations. Acta. Appl. Math. 8, 199–220 (2004)

    Article  MathSciNet  Google Scholar 

  2. Allasia, G.: Simultaneous interpolation and approximation by a class of multivariate positive operators. Numer. Alg. 34, 147–158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amsallem, D.: Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. thesis, Stanford University (2010)

  4. Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models . Internat. J. Numer. Methods Engng. 80(9), 1241–1258 (2009)

    Article  MATH  Google Scholar 

  5. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAAJ 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  6. Amsallem, D., Farhat, C.: An online method for interpolating linear reduced-order models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Antoulas, A.: A new result on passivity preserving model reduction. Syst. Control Lett. 54(4), 361–374 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Antoulas, A., Beattie, C., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 3–58. Springer-Verlag (2010)

  9. Arnoldi, W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  10. Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput 33(5), 2489–2518 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. at-Automatisierungstechnik 57(8), 411–419 (2009)

    Article  Google Scholar 

  12. Baur, U., Benner, P., Greiner, A., Korvink, J., Lienemann, J., Moosmann, C.: Parameter preserving model order reduction for MEMS applications. Math. Comput. Model. Dyn. Syst. 17(5), 297–317 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Benner, P., Feng, L.: A robust algorithm for parametric model order reduction based on implicit moment matching. In: Quarteroni, A., Rozza, R. (eds.) Reduced Order Methods for Modeling and Computational Reduction, vol. 9, pp. 159–186. Springer-Verlag, Berlin (2014)

  14. Benner, P., Gugercin, S., Willcox, K.: A survey of model reduction methods for parametric systems. Tech. Rep. MPIMD/13-14. Max Planck Institute, Magdeburg (2013). Available from URL http://www.mpi-magdeburg.mpg.de/preprints/

  15. Bond, B.N., Daniel, L.: A piecewise-linear moment-matching approach to parameterized model-order reduction for highly nonlinear systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(12), 1467–1480 (2007)

    Article  Google Scholar 

  16. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  18. Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(5), 678–693 (2004)

    Article  Google Scholar 

  19. Degroote, J., Vierendeels, J., Willcox, K.: Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Methods Fluids 63, 207–230 (2010)

    MATH  MathSciNet  Google Scholar 

  20. D’Elia, M., Dedé, L., Quarteroni, A.: Reduced basis method for parameterized differential algebraic equations. Bol. Soc. Esp. Math. Apl. 46, 45–73 (2009)

    MATH  Google Scholar 

  21. Elfadel, I.M., Ling, D.D.: A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks. In: Digest of Technical Papers of 1997 IEEE/ACM International Conference Computer-Aided Design, pp. 66–71 (1997)

  22. Farle, O., Hill, V., Ingelström, P., Dyczij-Edlinger, R.: Multi-parameter polynomial order reduction of linear finite element models. Math. Comput. Model. Dyn. Syst. 14, 421–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14, 639–649 (1995)

    Article  Google Scholar 

  24. Feng, L., Rudnyi, E., Korvink, J.: Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1838–1847 (2005)

    Article  Google Scholar 

  25. Ferranti, F., Antonini, G., Dhaene, T., Knockaert, L.: Passivity-preserving interpolation-based parameterized model order reduction of PEEC models based on scattered grids. Int. J. Numer. Modell. 24(5), 478–495 (2011)

    Article  MATH  Google Scholar 

  26. Ferrer, J., García, M.I., Peurta, F.: Differentiable families of subspaces. Linear Algebra Appl. 199, 229–252 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Freund, R.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1-2), 395–421 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Freund, R.: The SPRIM algorithm for structure-preserving order reduction of general RCL circuits model reduction for circuit simulation. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 25–52. Springer-Verlag, Berlin (2011)

  29. Gallivan, K., Vandendorpe, A., Dooren, P.V.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Geuss, M., Panzer, H., Lohmann, B.: On parametric model order reduction by matrix interpolation. In: Proceedings of the European Control Conference, pp. 3433–3438. IEEE, Zürich (2013)

  31. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis. University of Illinois, Urbana-Champaign (1997)

    Google Scholar 

  32. Gunupudi, P., Khazaka, R., Nakhla, M.: Analysis of transmission line circuits using multidimensional model reduction techniques. IEEE Trans. Adv. Packag. 25(2), 174–180 (2002)

    Article  Google Scholar 

  33. Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hay, A., Borggaard, J., Akhtar, I., Pelletier, D.: Reduced-order models for parameter dependent geometries based on shaped sensitivity analysis. J. Comput. Phys. 229, 1327–1353 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ionita, A., Antoulas, A.: Data-driven parametrized model reduction in the Loewner framework. SIAM J. Sci. Comput. 36(3), A984–A1007 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ionutiu, R., Rommes, J.: On synthesis of reduced order models. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 201–214. Springer-Verlag, Berlin (2011)

  37. Leung, A.T., Khazaka, R.: Parametric model order reduction technique for design optimization. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2005), vol. 2, pp. 1290–1293 (2005)

  38. Li, Y.T., Bai, Z., Su, Y.: A two-directional Arnoldi process and its application to parametric model order reduction. Comput. J. Appl. Math. 226, 10–21 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26(1), 17–32 (1981)

    Article  Google Scholar 

  40. Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Circuits Syst. 17(8), 645–654 (1998)

    Google Scholar 

  41. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungtechnik 58(8), 475–484 (2010)

    Google Scholar 

  42. Reis, T.: Circuit synthesis of passive descriptor systems - a modified nodal approach. Int. J. Circuit Theory Appl. 38(1), 44–68 (2010)

    Article  MATH  Google Scholar 

  43. Reis, T, Stykel, T.: PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1354–1367 (2010)

    Article  Google Scholar 

  44. Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10(1), 1–34 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Son, N.: Interpolation based parametric model order reduction. Ph.D. thesis (2012)

  46. Son, N.: A real time procedure for affinely dependent parametric model order reduction using interpolation on grassmann manifolds. Int. J. Numer. Methods Eng. 93(8), 818–833 (2013)

    MathSciNet  Google Scholar 

  47. Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54(4), 347–360 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Steinbrecher, A., Stykel, T.: Element-based model reduction in circuit simulation. In: Benner, P. (ed.) System Reduction for Nanoscale IC Design, Mathematics in Industry, vol. 20, pp. 31–66. Springer-Verlag, Berlin (2014)

  49. Stykel, T.: Balancing-related model reduction of circuit equations using topological structure. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 53–80. Springer-Verlag, Berlin (2011)

  50. Villena, J., Silveira, L.: SPARE - A scalable algorithm for passive, structure preserving, parameter-aware model reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(6), 925–938 (2010)

    Article  Google Scholar 

  51. Vlach, J., Singhal, K.: Computer Methods for Circuit Analysis and Design. Kluwer Academic Publisherd, Dordrecht (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Son.

Additional information

Communicated by: Editors of Special Issue on MoRePas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, N.T., Stykel, T. Model order reduction of parameterized circuit equations based on interpolation. Adv Comput Math 41, 1321–1342 (2015). https://doi.org/10.1007/s10444-015-9418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9418-z

Keywords

Mathematics Subject Classification (2010)

Navigation